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While great emphasis has been placed on the role of social interactions as a driver of
innovation growth, very few empirical studies have explicitly investigated the impact of social
network structures on the innovation performance of cities. Past research has mostly
explored scaling laws of socio-economic outputs of cities as determined by, for example, the
single predictor of population. Here, by drawing on a publicly available dataset of the startup
ecosystem, we build the first Workforce Mobility Network among metropolitan areas in the
US. We found that node centrality computed on this network accounts for most of the
variability observed in cities’ innovation performance and significantly outperforms other
predictors such as population size or density, suggesting that policies and initiatives aiming at
sustaining innovation processes might benefit from fostering professional networks alongside
other economic or systemic incentives. As opposed to previous approaches powered by
census data, our model can be updated in real-time upon open databases, opening up new
opportunities both for researchers in a variety of disciplines to study urban economies in new
ways, and for practitioners to design tools for monitoring such economies in real-time.
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Introduction

ver the last 2 decades, developed and developing coun-

tries alike have witnessed a radical transformation in the

nature and dynamics of their innovation processes. A
major factor that has triggered this change is the emergence of
new entrepreneurial ecosystems centered on high-growth start-
ups. In the United States, startups account for the majority of new
job creations (Decker et al., 2014) and have rapidly expanded not
only in size but also geographically by creating distributed
innovation centers (Acs and Mueller, 2008). Abundant empirical
evidence supports the idea that young and innovative firms
guarantee the long-term growth of cities and sustain the eco-
nomic life by creating wealth and new jobs also in related
industries (Bos and Stam, 2014; Glaeser et al.,, 2010; Hall and
Raumplaner, 1998, Haltiwanger et al., 2013; Mumford, 1961;
Weins and Jackson, 2014).

Researchers have tried to shed light on early indicators of
success in modern innovation environments. In the attempt of
building baseline models to predict innovation in cities, past
efforts have mainly focused on predicting a wide range of socio-
economic indicators of wealth (e.g., GDP, employment, housing
and infrastructures) and a range of innovation indicators (e.g.,
abundance of young firms, number of patents granted) solely
based on population size or density (Arbesman et al., 2009;
Arcaute et al., 2015; Bettencourt et al., 2007a, b). These studies
have shown that population size alone is able to reliably predict—
with a coefficient of determination R? for linear regression in the
[0.88,0.99] range—several socio-economic outputs of cities
including income, electrical consumption, total wages, and
employment. Yet, the correlations between population char-
acteristics and outputs associated with innovation processes such
as number of granted patents (R?=0.72), number of inventors
(R?2=0.76), and R&D establishments (R? = 0.77) are not equally
strong. In fact, innovation-related indicators report the smallest
correlation coefficients among all the other variables (Bettencourt
et al,, 2007a) (Fig. 1).

This discrepancy points to three main limitations of prediction
models solely based on demographic variables. First, by treating
geographical areas as isolated entities, such models overlook the
role of social interactions, yet well-established urban theories
(Jacobs, 1970) and qualitative (Saxenian, 1996) and quantitative
findings in economics (Glaeser, 2011) have repeatedly shown that
a dense and dynamic web of interactions among specialized
workers, entrepreneurs, and investors—also referred to as the
“thickness of the market”—plays a pivotal role in driving idea
recombination, innovation generation, and ultimately economic
growth (Glaeser and Scheinkman, 2001; Jacobs, 1961; Moretti,
2012). Second, these past models do not account for the fact that
cities grow through the attraction of highly talented individuals
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Fig. 1 Correlation coefficients between population size and various socio-
economic outputs, adapted from Bettencourt et al. (2007a). Data suggest
that innovation-related indicators (marked in red) are less correlated with
population than other socio-economic outputs. These results are computed
with data covering the [1997, 2003] period.
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(also called “the creative class” (Florida, 2005)), and the creative
outputs from such individuals have been recently found to
explain superlinear urban scaling (Keuschnigg et al, 2019).
Finally, the life-cycle of a modern innovative startup—its birth,
growth, acquisition, and extinction—is much faster than the time
frames within which past models’ inputs (e.g., demographic data)
and outputs (e.g., patenting rates) are typically defined.

Previous research has provided evidence that simple scaling
laws of population miss evolutionary dynamics that are key to
explain many city-level processes (Depersin and Barthelemy,
2018), and that the application of tools from statistical physics to
a variety of spatial networks allows for a more accurate descrip-
tion of such complex dynamics (Barbosa et al., 2018; Barthelemy,
2016, 2019; Kirkley et al., 2018; Limmer et al., 2006; Tria, 2014).
However, constrained by limited data availability, only a few
empirical studies have attempted to investigate the impact of
different types of social network structures on economic growth
and innovation performance of cities (Bettencourt et al., 2007;
Eagle et al., 2010; Makarem, 2016, Powell et al., 1996; Sorenson
and Stuart, 2001).

This work contributes to fill the gap by drawing on a novel
dataset from CrunchBase, an online database containing histor-
ical records of the evolution of the worldwide startup ecosystem.
In previous research, CrunchBase records have been used to
predict the success of individual startups (Moreno et al., 2020).
Our research question is: To which extent proxies for the US
workforce mobility inferred from CrunchBase predict two main
urban innovation metrics? To answer that question, we built and
analyzed the first Workforce Mobility Network (WMN), which,
unlike previous approaches in the literature, is temporally fine-
grained and comes from publicly available data'. The network’s
nodes are metropolitan areas, and its directed links (edges) are
workforce flows between area pairs; the edge weight from
metropolitan area i to j is equal to the number of professionals
who worked at i and then moved for work to j. Figure 2 provides
an illustration of the procedure adopted to construct WMN:
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Fig. 2 Example of how the Workforce Mobility Network (WMN) is built.
Its nodes represent metropolitan statistical areas (MSA) in the United
States, while each of its directed links has a weight equal to the number of
employees who worked in one area and then moved to another area. For
instance, Jane Doe, who moved from Square Inc. in the San Francisco area
(green) to Codecademy in the New York area (red), acted as a bridge
between the two companies and contributed to increase the weight of the
directed link from the San Francisco area to the New York area by one.
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Dr. Jane Doe quits her job at Square Inc., a company based in the
San Francisco-Oakland-Hayward metropolitan area (green), to
then join Codecademy, located in the New York-Newark-Jersey
area (red), thus acting as a bridge between the two areas; ultimately,
the directed link from the “San Francisco-Oakland-Hayward”
node to the “New York-Newark-Jersey” node has a weight equal to
the number of unique workers who moved from one location to the
other.

The opportunity to recombine ideas and access relevant
knowledge is crucial for companies that aim at generating inno-
vation (Burt, 1993; Hargadon, 1998; Parise et al, 2015). The
likelihood of a company benefiting from new ideas, know-how,
and talents is determined not only by the availability of these
resources within the city where the company is located (endo-
genous view suggested by research on urban complexity (Bet-
tencourt et al., 2007; Eagle et al., 2010; Makarem, 2016; Powell
et al., 1996; Sorenson and Stuart, 2001)), but also by the oppor-
tunity to absorb them from other cities (exogenous view sug-
gested by research on the economics of migration (Florida, 2005;
Glaeser, 2011; Keuschnigg et al., 2019)). As such, we hypothesized
that the most central areas in WMN, rather than the most densely
populated ones, are the most innovative. In so doing, we do not
study what determines migration: it is known that workforce
mobility impacts network centrality (opportunities are created by
talent migration (Keuschnigg et al., 2019)), and that, in a circular
way, network centrality impacts workforce mobility (talent
migration happens where opportunities are (Florida, 2005)).
Instead, we study to which extent network centrality metrics are
predictive of economic performance. To that end, we considered
two innovation measures for each metropolitan area i: (1) the
number S; of successful startups in i (a startup is successful if it
either was acquired, did an Initial Public Offering (IPO), or
acquired another startup); and (2) the cumulative acquisition
price A; of all startups in i. Differently from commonly used
measures of output such as the number of granted patents, our
measures adapt more dynamically to the rapidly changing market
and better reflect a startup’s ability to translate its innovation
potential into immediate and tangible economic value. In a
modern innovation landscape characterized more and more by
digital solutions, global outreach, low barrier to entry, and
extremely fast business developments, the number of patents
might not fully reflect actual levels of innovation. Often patents
are used as a defensive tool against “patent trolling” (Cohen et al,,
2016) or are used to discourage the entry of market newcomers
rather than actually being used to produce and commercialize
genuinely innovative products (Nicholas, 2013). For complete-
ness, we present empirical results considering patenting rates as a
proxy for innovation as well, and do so in Supplementary
Information.

In summary, we measured to which extent WMN—specifically,
the centrality of its nodes—predicts innovation performance of
cities, measured through S; and 4,, and how those predictions
compare to previous models’ in the literature.

Methods

Datasets. We combined data from three sources. First, from the
2010 US census data, we extracted information about population
size, land area, and population density at the level of Metropolitan
Statistical Area (MSA). Second, from the United States Patent and
Trademark Office (USPTQO), we associated the numbers of
patents granted in the year of 2010 with the inventors’ metro-
politan areas. Third, from the CrunchBase web APIs, we collected
all information regarding organizations recorded up to the end of
2016, and for people (workers) recorded up to end of year 2010.
For each organization we extracted data on: address of
the headquarter, foundation date, funding rounds, acquisitions

(also referred to as exifs), initial public offers (IPOs), status
(active, closed), and team members. The address, in turn, consists
of street name, zip-code, city name, and state. Funding rounds
record the financial investment of individuals or venture capital
firms into a company (organization), i.e., the purchase of a certain
percentage of ownership of the company, while acquisitions
indicate the transfer of the company’s total ownership to another
company. The data on funding rounds and acquisitions include
the parties involved, the date, and the monetary value of the
transaction in US dollars. We were able to associate the compa-
nies in our data with 369 (out of the 374) metropolitan areas.
Workers are linked to organizations through the professional
roles they hold. Examples of role titles are CEO, founder, board
member, and employee. Workers can have multiple jobs/roles
within the same organization or across different organizations.
Roles can be associated with a start date and an end date; the
earliest starting dates in the dataset are in the year of 1960, but
75% of the records are from 2000 to 2010 (see Supplementary
Information). About 42% of all the job records include a starting
date allowing for a longitudinal analysis of the flow of workers
between various firms.

Construction of the Workforce Mobility Network. We modeled
the Workforce Mobility Network (WMN) as a directed graph of
metropolitan areas. Given any pair of roles r; and r, played by a
worker in metropolitan areas i and j, respectively (i#j), we
incremented the weight w;; by one if the start date in role ry
preceded the start date in role r,. When end dates were available,
we incremented both weights w;; and wj; by one if the end date of
1, followed the start date of r,—in that case, the roles temporally
overlapped and we, therefore, assumed that information exchange
between the two areas was bidirectional.

Centrality measures. Different measures of centrality have been
proposed over the years to quantify the importance of a node in a
complex network (Latora et al., 2017). In this work, we computed
four centrality measures for each WMN node: degree centrality,
node strength, harmonic closeness, and Google PageRank.

Let G be a weighted graph with N nodes described by the N x N
weighted adjacency matrix W = {w;;} whose entry w;; is equal to
the weight of the directed link connecting node i to node j, or is
equal to 0 if there is not a direct connection from node i to node j.
As for the case of G being an unweighted graph, we define the
adjacency matrix A = {a;} of G, which simply indicates which
pairs of nodes are connected with a N x N matrix such that a;; =1
if w;;#0, and a;; =0 if w;=0.

Our first centrality measure out of the four is degree centrality,
which is based on the idea that important nodes are those with
the largest number of ties to other nodes in the graph. In a
directed graph, the degree centrality of node i is defined as:

cP— ki _Zjiluij+“ji (1)
PN—-1  2(N-1)

where k; is the number of directed links to i and those from i.
Our second centrality measure is strength centrality. For each
node i, this is defined as:

N
) Wit wg
cS— i @ (2)

5% i
where strength s; of node i is the sum of the weights of the edges
incident in i.
Our third centrality measure is the harmonic closeness
centrality (Marchiori and Latora, 2000). For each node i, this
measure is the sum of all the minimum distances d;; from i to any
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another node j. The minimum distance dj; is the length of the
weighted shortest path between i and j, considering that the
distance between two neighbors a and b is equal to the inverse of
the edge weight that connects them (d,, = W%b)' Formally, the

harmonic centrality is defined as:
1
C _ —
“- ; dy ®)

Our fourth and final centrality measure is the PageRank
centrality. For each node i, this is the stationary probability that a
“surfer” that randomly travels on the network’s directed links
arrives at node i. It is recursively defined as:

cR

- (4)
{illij)eay ™
where k; is the degree of node j, and « is a damping factor
(traditionally set to 0.85) that models the probability of the surfer
following an existing directed link instead of jumping to any
other node picked at random with uniform probability. In this
work, we considered a weighted version (Xing and Ghorbani,
2004) of the PageRank centrality that sets the probability of
following a directed link proportional to the weight of that link.
Formally, this is expressed as:

11—«

N

PR _
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1

2. T (5)
{ilGis)eAl ]
where the factor % expresses the probability of transitioning from
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node j to node i being equal to the weight of the link between j
and i (w;;) divided by the total strength of j’s outgoing links (s;).
The PageRank values are computed with an iterative procedure
(implemented efficiently through the so-called power method
(Arasu et al., 2002)) that starts by assigning a uniform PageRank
value to all nodes C'® = 1/N, and runs until convergence.

For all the four centrality measures, we considered their

normalized versions C; = ZS’ c such that the sum of centrality
j=1 7

scores over all the nodes in the network is equal to 1.

Results

All the following models are based on startups that were active in
the United States in 2010, and on all their historical information
up to the end of that year. For each of the metropolitan areas in
which these startups were located, we measured the innovation
performance indicators S; and A; in the [2011-2016] period.

Residual variability of population-based models. Consistently
with previous work (Bettencourt et al., 2007a), we found a non-
linear scaling of our two innovation measures S; and A; with
population size P;, and with past fundings F; (Fig. 3): the two
innovation measures scale superlinearly with population size (8 =
1.2 — 1.6, suggesting increasing returns with population size),
and, as one expects for any material quantity, they scale sub-
linearly with past fundings (8 = 0.6 — 0.8 < 1, which “characterizes
material quantities displaying economies of scale associated with
infrastructure” (Bettencourt et al., 2007a)).

However, despite the correlations being strong (the cross-
correlations are shown in Supplementary Information), perfor-
mance variability is still high. Many cities that are similar in size
and in past fundings expressed very different performances. For
example, the North Port-Bradenton-Sarasota metropolitan area
(Florida) and the Colorado-Springs metropolitan area (Colorado)
are very similar with respect to number of startups active in 2010
(respectively, 106 and 99), population (~10°), and funding received

4

(~1088), yet the performances of their companies are significantly
different: companies in “North Port-Bradenton-Sarasota” have
been sold for a cumulative value of 5.8-10%$, while those in
“Colorado-Springs” reported a cumulative acquisition price smaller
by two orders of magnitude, namely 4.3 - 107§.

Our aim was to investigate to which extent these differences in
performance could be accounted for by other predictors. In
particular, we hypothesized that workforce mobility explains
most of the residual variability.

The Workforce Mobility Network. We constructed the Work-
force Mobility Network (WMN) among metropolitan areas by using
CrunchBase records of job transitions from 1960 to the end of 2010.
Among the 380 metropolitan areas in the United States, 243 had at
least one active startup in our data. As a result, the final network had
243 nodes and 2,169 edges, and reflected 26,660 worker flows
among metropolitan areas. When considering both incoming and
outgoing edges, the maximum node degree is 165, and the max-
imum node strength (the maximum sum of the link weights for a
node) is 8370. The strength distribution follows a power-law func-
tion with an exponent ~ 2, a value similar to those observed in other
real-world weighted networks (Latora et al,, 2017).

To visualize WMN, we projected it onto the map of the United
States, centering its nodes on the metropolitan areas they
represent (Fig. 4A). Since the number of edges was high, to
improve the visualization, we reduced the number of displayed
edges with a network backbone extraction algorithm (Coscia and
Neftke, 2017), which identified the most statistically significant
edges for each node and pruned the rest out. Then, on the
original WMN (that not subject to any backboning), we
computed each node’s centrality according the four measures
defined in Methods, and PageRank yielded the best fit. In Fig. 4,
we notice that the most central nodes tend to be US coastal areas,
which happen to be linked with each other by the strongest edges.
Although population and centrality are in general well correlated
(Spearman rank correlation p = 0.70), large fluctuations are still
observed: indeed, despite being large, several cities do not score
high in terms of node centrality (Fig. 4B).

To identify cities that are small yet central, and viceversa, we
ranked cities by their ratios # between their PageRank centrality
values C'® and their population sizes P;:

P P
S WOV ©
Pi/ 2P,

Both centrality values and population sizes are normalized by
their sums across all areas. Table 1 shows the 10 metropolitan
areas with the highest values of #, and the 10 with the lowest
values. Metropolitan areas at the top have higher centrality
relative to their population size. These include large and central
areas such as San Francisco as well as much smaller ones (e.g.,
Boulder and Ithaca) that are remarkably central despite their
limited size. On the other hand, the ten cities at the bottom are
generally very populous yet not central in workforce flows, and,
with the exception of Virginia Beach, the remaining nine cities
experience relatively limited financial returns from innovation.
These findings seem to suggest that network centrality might
predict innovation performance better than what population
counts would do. We set out to test that proposition next.

Predicting innovation performance of cities. We used linear
regression to evaluate the impact of demographic characteristics and
network characteristics on the performance of an area’s startups.
Linear regression is an approach for modeling a linear relationship
between a dependent variable (our innovation measure S; or \A;) and
a set of independent variables, and it does so by associating a
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Fig. 3 Scatter plots of our two innovation measures, namely the total number of successful startups S; and the cumulative acquisition price .A;,
against population size P; and total past fundings ;. Double logarithmic plots, coefficients of determination R2, and corresponding -coefficients for the

four least-square linear regressions are shown.
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Fig. 4 The backbone of the Workforce Mobility Network (WMN) visualized. A On the map of the United States; and B on a standard force-directed
network layout. A node's size is proportional to the area's population size, its color intensity is proportional to its PageRank centrality, and an edge's width
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so-called B-coefficient with each independent variable such as the sum
of all independent variables multiplied by their respective f3-coeffi-
cients approximates the value of the dependent variable with minimal
error. Specifically, we used an ordinary least-square (OLS) regression
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Table 1 Cumulative acquisition prices .A; for the ten metropolitan areas (MSAs) with the highest values of centrality/population
ratio 7, and the ten cities with the lowest values.

Top 10 according to 7 Bottom 10 according to

MSA Population Price A, n MSA Population Price A; n

San Jose, CA 1.8M 245B n.4 Riverside, CA 4.2M 315M 0.044
San Francisco, CA 4.3M 160B 6.69 Columbia, SC 0.8M 2M 0.124
Boulder, CO 0.3M 1.7B 6.06 Oklahoma, City, OK 12M 0.6B 0.148
Boston, MA 4.5M 1598 3.00 Cape Coral, FL 0.6M 3.6M 0.153
Ithaca, NY 0.1M 0.5B 2.56 Fresno, CA 1.0M 29M 0.163
Austin, TX 1.7M 14B 2.43 Chattanooga, TN 0.5M 160M 0.174
Durham, NC 0.5M 3.4B 2.42 Virginia Beach, VA 1.7M 4.7B 0177
Ann Arbor, Ml 0.3M 0.4B 212 Buffalo, NY 1M 27M 0.185
Seattle, WA 3.4M 32B 2.09 Greensboro, NC 1M 0.6B 0.187
Trenton, NJ 0.3M 148 1.94 York-Hanover, PA 0.4M 0.4B 0.201

(i.e., number of successful startups, total acquisition prices) rather
than using ratios (e.g., percentage of successful startups) or per-capita
values. That is because these two latter quantities implicitly assume
that the dependent variable (e.g., innovation measure) linearly
increases with the independent variables (e.g., number of existing
startups, population size), while we know that it tends to
super-linearly increase with them. Since all regression variables had
skewed distributions, we log-transformed them using base-10
logarithm.

In the regression models, we experimented with two different
groups of predictors (whose cross-correlations are shown in
Supplementary Information): (i) socio-economic indicators; and (ii)
indicators based on WMN’s structure. First, the socio-economic
indicators based on the literature are population size (Bettencourt et al.,
2007a), population density (Jacobs, 1961), and number of patents
granted in each metropolitan area (Bettencourt et al,, 2007) in the year
of 2010. To those three indicators, we added two others derived from
CrunchBase: the number of active startups ; in 2010, and the total
past funding F; raised up to the year of 2010. The number of active
startups A/, is an upper bound for the number of successful ones and,
as such, represents an important variable to control for; on the other
hand, the independent variable of past funding F; is not necessarily
correlated with our dependent variable (ie., with the actual innovation
levels of companies), can be influenced by factors such as local tax
policies, and, as such, can be regarded as a proxy for innovation
incentives each area tends to enjoy.

Second, the indicators based on WMN’s structure aim at capturing
each area’s centrality in the flows of ideas, techniques, knowledge,
creative inputs, and business opportunities (Moreno et al., 2020). To
characterize the potential exposure of a metropolitan area to these
flows, we computed four centrality measures: degree centrality, node
strength, Google PageRank, and harmonic closeness (see Methods). If
we imagine knowledge as a collection of discrete units and assume
that these units randomly flow in WMN, then an area’s PageRank
score is the fraction of the global knowledge the area has potential
access to (e.g. if the score is 0.2, then 20% of the global knowledge is
potentially accessible by the area). In a similar way, area ’s harmonic
closeness is the distance (measured as the weighted number of hops)
that a given unit of information needs to traverse to reach node i
starting from any other node (Boldi and Vigna, 2014; Crucitti et al,
2006; Marchiori and Latora, 2000; Pan and Saramiki, 2011).

Table 2 reports the adjusted coefficients of determination R? and
the S-coefficients for the ten models. The first 9 models consider the
independent variables separately. We see that predicting acquisition
prices A, is harder than predicting the number of successful startups
S,, yet the relative power of the predictors is mostly consistent across
the two innovation measures. All the socio-economic indicators
(models 1-5) are good predictors for the two measures, and, among

6

them, the control variable of the number of active startups (5) is the
most powerful predictor for the number of successful startups S;
(R2=092) and is among the most predictive variables for the
cumulative acquisition prices A; (R? = 0.57). That is also because the
number of active startups is an upper bound for the number of
successful ones. In line with previous empirical findings (Bettencourt
et al, 2007a), population (1) is positively correlated with both
innovation measures. However, population density (2) is less so. Past
fundings (3) and number of patents (4) are also positively associated,
yet have the smallest fS-coefficients. The last four models (models
6-9) test our four network centrality measures: PageRank (6) and
node strength (7) have higher B-coefficients and R* compared to
node degree, which do not account for network weights (8), and
harmonic centrality (9). Overall, PageRank outperforms population
size by 23% when predicting the number of successful startups S;,
and is the top predictor of the cumulative acquisition prices A;,
outperforming population by 36%.

To further disentangle the unique contribution of each predictor,
we used a stepwise feature selection procedure to select the
combination of predictors with the highest R2. Specifically, we used
the stepAIC algorithm implemented in the R standard packages, a
widely used search method for feature selection. The method is based
on the Akaike Information Criterion (Sakamoto et al., 1986) (AIC),
an estimate of the relative amount of information lost by a model to
represent the process that generated the empirical data. The AIC
score rewards models that achieve a high goodness-of-fit score and
penalizes them if they become overly complex. stepAIC measures the
AIC score of models obtained by removing different sets of features
from the original model and selects the feature combination that
yields the lowest AIC. The two models that consist of the selected
variables are reported in column 10 in Table 2. PageRank is the only
network metric retained by the feature selection method because it is
the only one that, in combination with the socio-economic features,
improves the overall prediction. Also, the S-coefficient of PageRank is
the highest for A;, and the second highest (only after the control
variable of the number of active startups) for S;. In both cases, the
coefficients of determination are significantly larger than those
obtained for the other variables, especially than those obtained for
population size and density. The variability explained by these
models is equal to that explained by either of the two models
(columns “all” in Table 2) whose predictors consist of all the variables
under study.

To then check whether these effects are not due to chance, we
generated a null configuration by randomizing the values of each of
the innovation metrics A; and S;, and applied the best performing
regression model to this null configuration (column “random” in
Table 2). The result is that R drops to zero, and all the coefficients
are not statistically significant.
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Table 2 f-coefficients of the regression models to predict the two dependent variables of innovation performance, namely the
number of successful startups S; and the cumulative acquisition price .A;.

Dependent variable: number of successful startups S;

m (2) ) 4) (5) (6) @ (8) ) 10) (Random) (All)
Population size 12477 0160  0.450 0127
(0.067) (0.074) (0.310) (0.076)
Population density 1.208"™" 0.072 —0.203 0.064
(0.131) (0.054) (0.225) (0.053)
Past funding 0.580"" 0.087"" 0.040 0.097""
(0.026) (0.032) (0.134) 0.033
Patents 0.851" 0.01
(0.044) (0.047)
Active startups 1.023™ 0.423"" —0.304 0.462"""
(0.026) (0.108)  (0.450)  (0.113)
Network PageRank 1.083™ 03927 —0.045 0.510™"
(0.031) (0.089) (0.369) (0.181)
Network strength 0.785™" 0.000
(0.025) (0.307)
Network degree 1749 0.253
(0.076) (0.256)
Harmonic centrality 1.345™" —0.407
(0.055) (0.220)
Constant —6.153 5910 —3.662 —1137 —0.869 4186 —0.783 2538 —3536  0.032 —2.067 1.950
(0.395) (051) (0.220) (0.125) (0.055) (0.087) (0.068) (0.063) (0.631) (2.627) (0.087) (1.203)
Adjusted R2 0.73 0.39 0.79 0.74 0.92 0.90 0.88 0.80 0.82 0.94 0.01 0.94

Dependent variable: cumulative acquisitions prices A;

Q) (2 3) 4) (5) (6) ) (8) 9) (10) (Random) (AlD
Population size 1.592" 0268  —0.423 0.161
(0.155) (0.222) (0.354) (0.326)
Population density 1478 —0.114
(0.242) (0.229)
Past funding 0.743™ 0.064
(0.067) (0.142)
Patents 11517 0.226  0.086 0.320
(0.098) (0.183)  (0.291) (0.204)
Active startups 1316™" 0.21
(0.099) (0.487)
Network PageRank 14427 1.057"  0.065 1.815™
(0.103) (0.225) (0.359) (0.782)
Network strength 1.0177 —0.498
(0.079) (1.321)
Network degree 2243 0.814
(0.198) (1.105)
Harmonic centrality 1.710"" —1.150
(0.150) (0.947)
Constant —-0.412 14.70 2.753 5.808 6.310 12.94 6.402 10.69 2.952 9.661 .43 16.67
(0.919) (0.945) (0.563) (0.280) (0.211) (0.288) (0.212) (0.65) (0.535) (1.765) (2.816) (5.182)
Adjusted R2 0.44 0.22 0.48 0.51 0.57 0.60 0.55 0.49 0.49 0.60 0.00 0.61

Standard errors for the coefficients are reported in parenthesis. The random column refers to the best performing regression model applied to a null configuration where the values for each innovation
metric (S; for the top table, and A; for the bottom one) are randomized across areas.
‘p<0.1, "p<0.05 "p<0.01.

In multivariate regressions, if the independent variables are 5). To estimate the feature importance, we used the implementation
perfectly independent, then the coefficient of determination R2 of the LMG method provided in R in the package relaimpo
decomposes itself into the sum of the squares of the Pearson’s (Gromping, 2006). LMG estimates the proportion of the R?
correlation coefficients computed for each variable separately. contributed by each individual predictor by adding the predictors
However, in our case, as in the majority or real-world scenarios, to the regression model sequentially. The increased R? represents the
most of the variables are correlated with each other, and the sum of  contribution by the predictor added. Since the sequence of feature
each independent R? exceeds the one obtained for the multivariate addition influences the R? increase, LMG averages the value of the
regression (model 10). To properly decompose the relative contributions across all possible feature orderings. Interestingly,
contribution of the correlated independent variables, we used the after controlling for the number of active startups, PageRank is
Lindeman, Merenda and Gold (LMG) method (Lindeman et al, confirmed to be the predictor that explains most of the variability in
1980) and computed the relative importance of each predictor (Fig.  the data.
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Fig. 5 Relative contribution of each variable to the total variance explained by the regression models in Table R. The relative contribution is expressed

as percentage of the R? determined by each variable.

Discussion

To place our results in a broader context, consider that we have
corroborated previous work in that we have found similar
superlinear scaling relations between our innovation metrics and
city size (Arbesman et al., 2009; Arcaute et al., 2015; Bettencourt
et al.,, 2007a, b). Such work has typically attributed superlinear
scaling relations to mainly one endogenous factor: that of
increased social interconnectivity within cities (an emergent
property of city life). This is the most widely accepted explanation
in the literature. Yet the very same work has also conceded that
there are other exogenous factors that could further explain higher
levels of innovation in cities. Indeed, with city size, there have
been observed significant changes in, for example, the ability of
disproportionately attract talent (Florida, 2005; Glaeser, 2011;
Keuschnigg et al., 2019).

Our findings complement the widely accepted explanation of
“increased social interconnectivity in cities” by offering a more
nuanced understanding of urban innovation. We find that our
metrics of workforce mobility, albeit imperfect, predict innova-
tion levels that were previously unexplained by superlinear
growth. Despite what a scaling relationship suggests, a percentage
increase in population size might not be necessarily followed by a
percentage change in innovation. That is because big cities do not
grow in random ways but grow through their selective attraction of
talent(Keuschnigg et al., 2019). On a policy level, this should bring
a fundamental shift of focus: from blind city growth to selective city
growth. Ideally, policies should enable selective processes that are
considered desirable (e.g., those resulting in the attraction of talent
without suffering from the consequences of urban displacement
and gentrification). Economists have put forward quantitative
evidence, suggesting that a city’s economic performance is also
influenced by the type of people who migrate to the city (e.g., by
the migration of the so-called “creative class” (Florida, 2005)), and
they have typically done so based on migration records (Keusch-
nigg et al., 2019); yet, these records do not differentiate the variety
of migration flows, let alone the types of workforce flows that
support the emergence of new entrepreneurial ecosystems.

Based on these previous findings, we hypothesized that the
network of informal interactions between professional working at
startups who carry their expertize as they move from one city to
another is predictive of innovation outcomes. This is the first
study that has built a Workforce Mobility Network at the scale of
an entire country from open data, and that has shown that this
network’s structural characteristics are predictive of urban

innovation: global network measures tend to predict long-term
innovation better than even what cumulative investments do.

Our study comes with limitations that are mostly determined
by our data. No sufficient longitudinal data was available for
testing causal relationships and for ascertaining the robustness of
the model across historical periods characterized by different
patterns of economic activity. Furthermore, startups do not have
to publicly disclose their funding rounds or acquisition prices:
83% of the funding rounds in our dataset, for example, have been
fully disclosed on CrunchBase. Yet, as shown in Supplementary
Information, being of random nature, such missing data has little
impact on our two innovation measures, and no impact on a
comparative evaluation of areas. Finally, the time frames over
which workforce mobility and urban innovation were measured
did not necessarily overlap. As one expects, the more up-to-date
the workforce mobility data, the higher its predictive power. Yet,
as reported in Supplementary Information, our two urban inno-
vation measures could still be accurately predicted from
workforce mobility data that was 5 years older. When using
workforce mobility data up to 2005 only, we could predict the
number of successful startups S; and the cumulative acquisition
price A; with an adjusted R* of 0.56 and one of 0.67, respectively
—compared to 0.60 and 0.75 obtained by using the data up
to 2010.

Data availability

All the datasets used in this work can be fully and freely
downloaded from the Web. The CrunchBase data is available
through its public API at https://data.crunchbase.com, patent
data can be downloaded from http://www.patentsview.org/
download, and US census data from https://www.census.gov.
To map CrunchBase firms to metropolitan areas, we used the
census data available here: https://www.census.gov/geographies/
reference-files/time-series/geo/relationship-files.html. An inter-
active visualization of the network data is available on the pro-
ject’s website at http://goodcitylife.org/cities4innovation.

Received: 1 July 2020; Accepted: 25 November 2020;
Published online: 07 January 2021

Note
1 An interactive visualization of the network is available on the project’s website at
http://goodcitylife.org/cities4innovation.
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