Incentivizing Social Media Users
for Mobile Crowdsourcing

Panagiota Micholia®, Merkouris Karaliopoulos?, Iordanis Koutsopoulos?,
Luca Maria Aiello®, Gianmarco De Francisci Morales”, Daniele Quercia®

¢ University of Economics and Business, 76, Patission Str., GR10434, Athens, Greece
bQatar Computing Research Institute, Tornado Tower, 18th floor, Doha, Qatar
¢Nokia Bell Labs, Broers Building, 21 JJ Thomson Avenue, Madingley Road, CB30FA
Cambridge, UK

Abstract

We focus on the problem of contributor-task matching in mobile crowd-
sourcing. The idea is to identify existing social media users who posses do-
main expertise (e.g., photography) and incentivize them to perform some tasks
(e.g., take quality pictures). To this end, we propose a framework that extracts
the potentail contributors’ expertise based on their social media activity and
incentives them within the constrain of a budget. This framework does so by
preferentially targeting contributors who are likely to offer quality content. We
evaluate our framework on Flickr data for the entire city of Barcelona and show
that it ensures high levels of task quality and wide geographic coverage, all
without compromising fairness.
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1. Introduction

The computing power of mobile phones nowadays allows notifications to be
sent to users on the fly, and thus labour and services can now be supplied in
real time. This is made possible by the raise of mobile crowd-sourcing sites. We
focus on the problem of contributor-task matching on those sites.

The main idea is that there are many social media users - especially power
users - who passionately contribute to existing online communities and, as a re-
sult, become experts in specific areas but their talent remains untapped. Hence,
there is a need for mechanisms to engage those experts in crowd-sourcing tasks.

To this end, we need to 1) identify the experts from. e.g., their social media
activity, and we do so by borrowing ideas from previous work such as (Amintoosi
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and Kanhere, 2014) and (Krontiris and Freiling, 2010); and 2) incentivize them,
and we do so by identifying those who are likely to enjoy the tasks at hand, i.e.,
their preferences closely match the tasks.

We propose to align what social media users already do (e.g., take and post
pictures on Flickr) with what a mobile crowd-sourcing marketplace demands
(e.g., take pictures of local cafes and restaurants). In so doing, we make two
main contributions:

e After formally describing the problem and the metrics involved (Section 2),
we propose a solution for it (Section 3). We propose a framework based
on a water filling algorithm in the context of mobile crowd-sourcing.

e We evaluate our proposal against real traces of Flickr users in the entire
city of Barcelona (Section 4). We find that our proposal ensures high
levels of quality for the completed crowdsourcing tasks and enjoys a wide
geographic coverage of the city. Also, its effectiveness does not come at
the expense of fairness.

2. Describing social media users

Our problem involves three main actors: task suppliers, the service provider
(Sp), and a set of task contributors (N). The suppliers offer a pool of tasks (L),
each of which comes with a budget. The service provider matches those tasks
with potential contributors that are both knowledgeable and willing to carry
those tasks out. To that end, the service provide should:

Problem: Identify and incentivize a set of contributors in a way that the
supplier’s satisfaction is mazimized.

To see the practical relevance of this problem, consider a photo-sharing site
such as Flickr. Flickr users are passionate about photography and share their
work online. Pictures differ in quality, and those of high quality tend to be liked
and further shared by other users on the site. One could imagine a situation in
which Flickr users might be willing to take pictures of their city’s local businesses
(e.g., cafes, shops, restaurants) under the right incentives. In this case, the goal
of the service provider is to best manage the budget provided by a local business
to incentivize and recruit the best Flickr users.

2.1. Identifying and characterizing contributors

The best contributors for a task are identified depending on their skills and
willingness to carry out the task. In what follows, we detail how we quantify
these two user attributes. The ideal mechanism should combine the two main
types of incentive in the literature: intrinsic motivation (you do something
because you find it fun) and extrinsic one (you do something because you get
paid for it). Our incentive scheme preferentially targets contributors who would
not necessarily visit a place but might well offer quality content for it. This



i€ N Contributor

je L Task

qi Quality of contributor

Q; Fullfillment score of task j

N; Contributors to task j

e; Activity of contributor

fi Number of positive feedbacks received by contributor
c; Number of contributions by

A Set of tasks’ thematic categories

Number of contributions by 7 in thematic area a

g5 Interest of contributor ¢ to thematic area a
Sp Service provider

B; Budget for task j

g Attractiveness of task j for contributor

Dij Payment offered to contributor ¢ for task j
Wi Willingness of contributor 4 to perform task j

Table 1: Table of symbols.

scheme is simple yet powerful, in that, it mixes intrinsic motivation (pleasure
for the task) with extrinsic one (monetary gain).

Skilled contributor. A contributor’s skill depends on how likely her /his con-
tributions will meet the expertise required by the task. In Flickr, this expertise
is to take high quality pictures. More generally, in social media, we assume that
one’s expertise is reflected by the number of likes one’s content has received.
In previous work (Schifanella et al., 2015), it has been shown that there is a
correlation between quality and popularity in Flickr pictures (rank correlation
0.4). So liked pictures are generally of quality. However, quality and likes do not
go always together. That has been shown to be true for pictures that are not
liked at all: those pictures can be either of questionable quality (more likely)
or of decent quality (less likely). By combining those two considerations, one
sees that the set of quality pictures consists of pictures with many likes and pic-
tures with a few likes or none. In a conservative fashion, we considered only the
pictures with many likes to be of quality. Thus contributor ¢’s quality becomes:
i
qi = = I

max <&
keN Ck

where f; is the number of positive feedback ¢ has collected overall (e.g., i’s
number of likes), ¢; is the total number of ¢’s contributions (e.g., i’s number of
pictures), and A is the set of all contributors. The fraction at the denominator
normalizes ¢; in the interval [0, 1].

The quality of a contributor 7 is then useful to measure the quality of an
entire task 7, which depends on the qualities of all j’s contributors. Based on
the context, this dependency could be:



e Either linear, leading to a fullfillment score for task j
Q=Y a (1)
1EN;
where Nj is the set of task j’s contributors;

e Or of diminishing returns:

Qi=1- [ —a). (2)

iGNj

Willing contributor. In addition to being able to carry out a task, a con-
tributor should also be willing to do it. This depends not only on whether the
contributor is active on the site at all but also on whether the task is of interest.

e (Contributor’s activity. 1i’s activity is i’s total number of contributions c;
normalized by the most active contributor

Ci

€;, = .
max c
keN

o Contributor’s interests. 1’s interest in area a is

a __
9i = e
where ¢f is the number of i’s contributions that belong to category a € A. For
instance, in Flickr, these categories are reflected by photo tags such as “food”
and “arts”. We made the choice of representing user interests as a vector of
categories because previous work showed that, from very simple information
such as Facebook likes, one can even predict personality traits Kosinski et al.
(2013). That might be worrying because of privacy concerns. However, our
way of gathering user interests is far more coarse-grained than the information
that is already publicly available on social media profiles. Consequently, our
approach ends up being more privacy conscious than what existing social media
sites tend to be.
Upon activity and interest, we could compute willingness. One way of doing
so is to linearly combine activity and interest:

e + gy
5

However, this formula assumes that a contributor’s willingness scales linearly
with the type and quantity of contributions. In reality, willingness is subject to
diminishing returns: the willingness of a contributor who has taken one picture
and that of a contributor who has taken ten pictures are likely to differ less than
ten times. As such, we could define the willingness of contributor 4 to perform
task j as

Oéij =

1—e %9, (3)



This definition has three main desirable properties (%) it ranges in [0, 1] so that it
can be treated as a probability; (%) it is monotonic with respect to «j, i.e., the
higher the attractiveness of a task to a contributor, the higher their willingness
to carry it out; and (744) it shows diminishing returns.

Yet, again, this new formula assumes we do not pay contributors. To model
the effect of payment on a contributor, we incorporate p;; into the definition of
the willingness function in (3):

— (v +YPpis
wij(vij, pij) =1—e (i @i +7pij) (4)

The two non-negative parameters 7 and 7 weigh the effect of payment p;;
against a;;. They should reflect the social media community at hand: it should
reflect how sensitive to payments the community’s members generally tend to
be. Payments may be either monetary, vouchers, or coupons to be redeemed
from the task supplier (e.g., free coffee, discounts on the admission fee).

3. Task Assignment and Budget Allocation Framework

A task can be assigned to one or more contributors. Given that the budget is
limited, a payment allocation strategy is needed to select the set of contributors
that maximizes the overall task quality. This joint task and budget allocation
problem is presented here under two scenarios. In the oracle scenario, the
service provider Sp knows exactly when and where the potentials contributors
are available at any point in time. In Section 3.1, we formalize the oracle
scenario as an optimization problem and describe a numerical method for its
solution. In the live scenario, Sp knows only those who are currently available.
In Section 3.2, we present a heuristic approach to solve the live scenario.

3.1. Budget allocation in the oracle scenario

In the oracle scenario, since we know where contributors are and when they
are available, we set out to solve a global optimization problem. The objective is
to allocate the budget B; to a subset of contributors N; C N. When a payment
for a task is offered, the contributor’s willingness to do that task increases (as
per Formula 4). The expected return of giving payment p;; to contributor ¢ can
thus be expressed as i’s quality multiplied by ¢’s willingness to complete the
task.

maximize Z Z qiwij (aij,pij)xij
JELIEN
subject to Z}%‘j%‘j =DB;,VjeLl (P0O)
ieEN
pi; >0, VjieLl, VieN
Ti5 € {0,1}, VjeL, Vi eN
where x;; is a binary variable that is 1, if task j is assigned to i; otherwise, it
is 0. To make the maximization problem tractable, we do not maximize over



all the contributors A/ but only over a selected number. This selection follows
either of two rules. After selecting all contributors within geographical reach,
task j is assigned to contributor i: 1) if j is the best matching task based
on i’s interests® (interest-based); or 2) if j is the geographically closest task
(proximity-based).

Once the restricted set of contributors N is determined for each task j, the
optimal budget distribution is computed, as we shall detail next.

8.1.1. Task assignment and budget allocation problem
The next goal is to allocate payments. We do so through the following
optimization:

maximize Z Z qiwij (Oéij,pij)
JELIEN]

subject to Z pij = Bj, VieL (P1)
iEN;
pi; >0, VjeLl,VieN,

This optimization maximizes the expected returns from the payments and
can be viewed as an instance of the broader family of Generalized Assignment
Problems (GAP) (see, for example, Martello and Toth (1990), Ch. 7). The
additive objective function in (P1) is separable and can be written as |£| dif-
ferent summands to be maximized independently, one for each task. Hence,
the original optimization problem can be rewritten as |£| independent discrete
problems of the form (P2)

minimize — Z qiwij(aij,pij)
1EN;
subject to Z pij—B;j=0,7€L (P2)
iEN;

—pij <0, VjeL, VieN

one for each task j € £. From (P2) we compute p;j considering that the
convex minimization problem with linear constraints can be solved using the
Karush-Kuhn-Tucker (KKT) first-order necessary conditions for the existence
of a local optimum (Avriel, 2003). Since the objective function is convex, the
local optimum is also a global one. The application of KKT (see the Appendix
A for the detailed derivation) yields the following expression for p;;:

pii = o [m%j — (e = (an?))] i Ay < ginfe 0
1] — v
if \j > gyPe e

L{’s interests are reflected by wij(j,0),v" = 1 in Formula 4. The 0 expresses the fact

that in the selection of contributors there is no payment.



Algorithm 1: Water filling algorithm for task j.
1: Input: By, {ets {’Yf}7 {aij}’ {a:}, i€ 'AG
2: Output: {p;;}
Initialization
3 wi(i) = (Vou; —In(y]) - @i)); pij =05 ¢ =1
Main Body
4: Sort Nj in order of increasing wl
5: while ¢ < ‘./\G‘ and Z Pij < Bj do
1EN;
lag = wl(c+ 1) —wl(c)
C

T if 3. 8 < B;j— Y pi; then
j=1"

@

iEN;
8: increase payments of each user ¢ among bottom-c contributors by
lag/~f
9: else
10: increase payments of each user ¢ among bottom-c contributors by

P
1
%Pby where p, = ((ES D ye (Bj — gf Dij)
J
11:  end if

12: c=c+1
13: end while

where \; is the Lagrange multiplier for the single equality constraint in (P2).
The direct closed-form computation of p;; and A; is not possible since it is not
known which instances of p;; are zeros and which ones are positive. However,
their values can be computed numerically by applying the so-called water fill-
ing algorithm (Palomar and Fonollosa, 2005). Initially, the algorithm sorts all
contributors in increasing order of water level defined as

wl(i) = 77 pij = Vi — (v} qs). (6)

The payments, which are initialized to zero, are then increased in successive
rounds. In the first round, the payment is offered to the contributor with the
minimum level. In the n** round, payments are offered to n contributors such
that their levels will reach the (n + 1)** minimum level. The algorithm stops
when the budget is exhausted. After termination, the value of water level wl
for all contributors who receive an offer is equal to —InA. The procedure is
described in detail in Algorithm 1 and schematically represented in Figure 1.

3.2. Budget allocation in the live scenario

As opposed to the oracle scenario, in the live scenario, we do not know where
contributors are and when they are available, therefore a global optimization
problem cannot be formulated. Every time a contributor becomes available, we
make K offers to the contributor and (s)he needs to decide whether to take one
of them. Since an offer consists of a task and a corresponding payment, we need
to assign the task and then determine the payments.
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Figure 1: Schematic description of the water filling algorithm for a task j. The bars’ heights
reflect the initial water level, wi(%), of each contributor i. Lines of different colors represent
the successive increases of weighted payments 'yf pij over different rounds of the algorithm.
Eventually, offers are made to all contributors, except to contributor 4.

3.2.1. Task-to-contributor assignment

We offer the K tasks in three different ways. In addition to the the interest-
based and proximity-based strategies defined in Section 3.1, we add a help-the-
weakest strategy. This rule accounts for each task’s current status, that is, its
residual budget, residual time, and its current task fullfillment score @Q;(t). It
works by assigning, at a given time ¢, the K tasks with the lowest fullfillment
scores.

8.2.2. Payment determination

The payment is a function of contributor’s willingness and intrinsic ability.
The intrinsic ability is fixed, while the payment and willingness can be changed.
To change them, we need to estimate them. We cannot estimate the willingness,
so we set it to a desired target value and determine the corresponding payment
each time. Such a value should match the provider’s ability of spending the
residual budget within the time left. That is because the more budget and the
less time (the higher the ratio budget over time), the higher the payment. Now,
to see how this plays out over time, consider the time between the campaign’s
start and its end. In this time window, if one were to pay at a constant rate,
this rate would be B;/T};. However, since payments are not precisely constant,
we need to make adjustments over time depending on:

. Bi(t)/Ty(¢)
adj, = =LA 2 (7)
B;/T;
If adj; > 0, then we have been paying up to time ¢ more than the constant
rate would suggest. If it is lower, we have been paying less. To converge to the

constant rate, we need to set the target willingness as:

Wirg(t) = min((1 — ¢)v/qi(t) + ¢ - adjy, 1) (8)



Where ¢ balances the relative weight of the adjustment parameter. By having
those quantities into Equation (4), we obtain the payment as:

pis(t) = mas(o, Mg 20004 0

4. Experiments

The goal of our framework is to complete the tasks with the highest quality
whilst ensuring the fairest payment. That is, the goal is to maximize both
the suppliers satisfaction and the contributors payments. To ensure that our
framework meets this goal, our evaluation ought to answer four main questions:

e Which of the two ways of allocating the budget (waterfilling in the oracle sce-
natio vs. heuristic in the live scenario) results in a high number of completed
tasks with a high quality? (Sec. 4.4.2)

e If the contributors have the possibility of choosing between multiple of-
fers, does it impact the comulative quality and the way budget is spent?
(Sec. 4.4.3)

e Which task-to-contributor assignment rule (proximity, interest, help the
weakest) is more effective? (Sec. 4.4.4)

e Does the quality depend on geographic density and task types? (Sec. 4.4.5)

We test the performance of both the offfine and online methods with three
main indicators: fullfillment score (); (cumulative quality contributed to the
task), budget spent, and task coverage (fraction of tasks with @; > 0). Next,
we introduce some algorithmic baselines, the dataset we use for the evaluation,
and the simulation set-up. In Section 4.4, we discuss the simulation results and
we answer the four questions above.

4.1. Baselines for the payment allocation

In the oracle scenario, we compare our waterfilling algorithm against two
simple baselines.
No payment baseline. This reflects a situation in which there is no incentive
mechanism: contributors are not paid, and, when they contribute, they do so
purely because of their interests.

Fixed payment baseline. All contributors are paid the same fixed amount,
computed by equally dividing the task budget B; to the set of contributors IV,
i.e., Dij = Bj/|Nj|, Vi € Nj.

4.2. Datasets

In our scenario, Flickr users are incentivized to take pictures of various
Foursquare venues in Barcelona.

Foursquare. We collect information from 14k+ Foursquare venues in Barcelona,
and categorize them in nine top-level categories (the set A in section 2.1): Arts



& Entertainment, College & Education, Food, Nightlife, Outdoors € Recreation,
Shops, Travel & Transport, Professional & Other Places, Residence.

Flickr. Out of the full set of the public geo-referenced Flickr pictures, we select
a random sample of 3.2M photos taken by 77k distinct users within the bounding
box of Barcelona in 2014. For each picture, we collect the anonymized owner
identifier, the free-text tags attached to the photo by the owner, the timestamp
noting when the photo was taken, and its geographic coordinates. The 15M tags
in our set are then matched to the nine top-level Foursquare categories.

4.8. Simulation set-up

To evaluate our framework we resort to a data-driven agent-based simulation.
Agents are Flickr users who have taken geo-tagged pictures. Each geo-tagged
photo is mapped to a simulation event represented by a tuple (¢, u,l), where ¢
is the event’s timestamp, u is the user, and [ is the location (i.e., geographic
coordinates) of the photo. We coalesce multiple time- and space-contiguous
photos into a single event to avoid counting a single upload of multiple shots
multiple times. Starting from our original datasets, after matching and filtering,
we obtain a set of 1800 Flickr users who are involved in approximately 20k
events. We also do one-to-one mappings of 1000 (a representative number for
our user set) Foursquare venues to tasks around the city.

Upon each event, the simulator selects a subset of up to K pending tasks
within distance D from the contributor’s i current location and ranks them
according to the task-to-contributor assignment rule. The contributor parses
the ordered list and considers sequentially the offers, which include information
about the venue that requests the photo-shooting task, as well as the person-
alized payment that is meant to serve as incentive. With probability w;;, the
contributor 4 executes task j, the task satisfaction index @; is increased by ¢;
according to Eq. (1), the task budget B; is decreased by p;;, and the contribu-
tor stops parsing the list. Otherwise, with probability 1 — w;;, the contributor
parses the next task in the ranked list. If the whole list is scanned without
selecting a task, the contributor does not contribute to any task.

Unless otherwise stated, B; = B for all j € £ and D = 1.5km (which
conservatively represents ten times the typical block walking distance). We
run experiments with several combinations of the parameters 77 and ~¢* at
the exponent of the willingness function. We plot results for 7/ = 0.3 and
v = 1, which ensure the exploration of adequate ranges for w;; and a;; in our
experiments.

4.4. Results

4.4.1. Parameter tuning for heuristic.

We first find the value of parameter ¢ in Eq. 8 that optimizes the performance
of the online heuristic. In Fig. 2a, the achieved aggregate task quality under all
three assignment rules is maximized when c is in the interval [0.5,0.7]. At low
c values, the initial offers tend to be too small, contributors most often reject
them and the offers grow only towards the very end of the campaign, given the

10
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Figure 2: Task (a) quality and (b) coverage obtained by the heuristic as a function of the
reference value c¢ for different assignment rules.
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Figure 3: (a) Task quality and (b) its distribution, for different allocation algorithms all
following the proximity based rule with B=200.

low budget consumption rate. Conversely, for high ¢ values, the difference in
payments with the contributor quality index ¢ is minimal, and the payments
are no longer directed towards the more skilled contributors. The task coverage
(Fig. 2b) is not very sensitive to ¢. Under the interest-based and help-the-
weakest assignment rules, the heuristic achieves full coverage irrespective of the
value of c.

4.4.2. Task quality across payment methods

Figure 3a plots the overall achieved quality as a function of the available
task budget B in the oracle scenario (solved with waterfilling or with the fixed-
payment baseline) and in the live scenario (solved with our heuristic approach,
for different values of K).

In the absence of payments (B = 0), the quality results into a minimum value
that sets the common reference point for all the single-offer (i.e., K=1) curves.
The introduction of incentives (B > 0) always increases the aggregate quality

11
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but to different extents depending on the budget allocation schemes. The single-
offer heuristic positions itself between the fixed payment baseline and the water
filling scheme across all budget values. The distribution of the task quality
values across all tasks in Fig. 3b (for B=200) points to stochastic dominance
relationships between the three schemes. The attracted quality of contributions
under the waterfilling scheme stochastically dominates the heuristic, which in
turn stochastically dominates the fixed payment scheme.

In summary, when only a single offer is given, the oracle scenario solved with
waterfilling yields better overall quality than the live scenario solved with the
heuristic approach.

In Figure 4, we compare all budget allocation schemes with respect to the
budget amount they spend for their achieved task quality. For small budget
values, which do not suffice to pay everybody, the water filling algorithm focuses
its payments to the most skilled contributors who are not intrinsically motivated
to contribute to a task. The algorithm makes maximal use of budget B, hence
its efficiency decreases for higher values of B. Large payments are offered to a
greater number of contributors and the willingness of the contributors is subject
to diminishing returns with respect to payments. In this way, payment diversity
does not reflect the diversity in quality contributions and all contributors will be
highly rewarded. On the contrary, the heuristic sets a strict upper limit to the
offers made (w,,q, parameter in Eq. 8), which does not change as the budget
B increases. Therefore, it avoids the unnecessarily high payments computed
by the fixed payment baseline. The same level of task quality is achieved with
much lower budget.

4.4.8. Increasing the number of offers K

More offers per contributor increase the chances that the contributor will
eventually pick up one of them. Figures 3a and 3b show that the heuristic
outperforms the waterfilling approach for K = 3. Hence, the heuristic effectively
overcomes all the main limitations of the offline waterfilling (need of complete
information and intractability of the problem for K > 1) and exhibits superior
performance when combined with multiple offers.

12
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4-4.4. Task quality across assignment rules

Figure 5a plots the achieved task quality as a function of K for all three
task assignment rules. The overall trend shows a diminishing return prop-
erty, as expected. The help-the-weakest rule achieves the best score and sat-
urates faster than the other two rules. It does so by tapping into otherwise-
underused task budgets and generating larger offers on average, as can be seen
from the markedly higher value of spent budget in Figure 5b. To assess the
quality/budget tradeoff, we measure the average budget spent per quality unit
(Figure 6). The interest-based rule is the most efficient, since it aligns tasks
to user interests, and thus needs smaller payments to achieve the same level of
willingness. The help-the-weakest rule is instead the most expensive, bearing
the cost of the imposed fairness, that is reached by incentivizing contributors
to tackle unpopular tasks.

13
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payment allocation algorithms under the proximity based rule, (b) for the online heuristic
under all task assignment rules for K = 1 and B = 200.

4.4.5. Impact of geographic density and task types on task quality

We investigate how the task depends on the geographical density of venues

and the type of tasks.
Area density. The completion of task in low-density areas might be challeng-
ing. To test that, we compute the distribution of contributor density across all
venues and classify them into four quartiles. Each quartile denotes the 25% of
contributor visits, with quartile Q1 including the bottom 25% of venues and Q4
being the top 25%. Figure 7a compares the three budget allocation algorithms
and the no payment baseline under the proximity-based assignment rule. Fig-
ure 7b compares all three task assignment rules when combined with the online
heuristic. In both figures, we report the actual achieved task quality in each
quartile normalized by the maximum achievable one had all offers made to the
contributors been accepted.

All three budget allocation schemes appear to achieve higher scores of nor-
malized quality in the lower three quartiles than in the top one (Q4). That
is, all schemes tend to take advantage of almost every single contribution op-
portunity for tasks where opportunities are scarce, while they are less effective
for the top-25% of venues. In the most visited venues, the task budget is split
over more contributors, payments tend to be lower and result greater number
of rejected offers. Figure 7a also implies that the performance differentiation of
the three budget allocation schemes, as earlier reported in Fig. 3a is due to the
way they treat the top-quartile venues. Note that in the absence of incentives,
there is not much difference among the quartiles, so the differences highlighted
above can be entirely attributed to the budget allocation algorithms.

We observe a similar pattern for the online heuristic in Figure 7b. The
proximity- and interest-based task assignment rules yield lower scores for tasks
at the top quartile. The help-the-weakest rule, on the contrary, distributes the
quality values more uniformly across the four quartiles.

Task category. Certain types of task might not attract contributors. In our
dataset, we observe a mismatch between the interests of the contributors and
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Table 2: Distribution of Flickr user interests over foursquare categories and percentage of
tasks in each thematic category.

Categories User Interests Tasks

Arts & Entertainment 8.64% 4.80%
College & Education 0.17% 4.70%
Food 0.78% 20.80%
Nightlife Spot 0.06% 6.10%
Outdoors & Recreation 83.49% 5.20%
Professional & Other Places 0.17% 23.80%
Residence 0.00% 0.90%
Shop & Service 0.55% 26.10%
Travel & Transport 6.15% 7.60%

the available tasks (see Table 2). Whereas Flickr users are mostly keen on taking
pictures outdoors in parks, the Foursquare venues fall predominately under the
categories Shops, Professional € Other Places, and Food. We explore how much
the alternative schemes for task assignment and budget distribution resolve this
mismatch.

In Figure 8a, we plot the task quality attracted for each category under the
proximity-based assignment rule. In line with intuition, the three categories with
the top scores are Shops, Professional € Other Places, and Food. The contrib-
utors, hence, are directed to venues of the most popular Foursquare categories.
All budget allocation schemes only amplify a difference that is already present
even without any incentives. The trend is reversed under the interest-based
rule, as shown in Fig. 8b. Irrespective of the payment allocation algorithm,
contributors follow their interests, as expressed in Flickr, and mainly carry out
tasks in the top Outdoors & Recreation category, followed by Arts & Entertain-
ment and Travel €& Transport. As a result, the contributions are concentrated
on the few venues that are of interest to the contributors, while the majority
of the venues suffer from a disadvantage. Clearly, the interest-based rule is not
the recommended option when the interests of the contributors do not match
the theme of the available tasks. Finally, the help-the-weakest assignment rule
follows the trend of the proximity-based one, achieving higher task quality for
the three most frequent venue categories. Given that the help-the-weakest rule
almost always dominates the proximity one, and the achieved quality is more
evenly distributed among the available tasks (see Figure 8c), we consider it to
be the best choice overall.

5. Related Work

5.1. From online to offline crowdsourcing

Online crowdsourcing has been used in a wide range of domains (Little,
2009; Kittur et al., 2011; Irani and Silberman, 2013), including natural lan-
guage processing (Callison-Burch, 2009; Bernstein et al., 2010), annotation of
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Figure 8: Task quality for payment allocation algorithms under different thematic categories
subject to the (a) proximity based rule, (b) interest based rule and (c) all the task assignment
rules, for K=1 and B=200.

images (Rashtchian et al., 2010), and evaluation of creativity for multimedia
content (Schifanella et al., 2015). There are still challenges to be addressed
though, not least on how to formulate a task (Kittur et al., 2008; Mason and
Suri, 2012), how to select crowd-workers (Mashhadi and Capra, 2011), and how
to assess the quality of crowdsourced works (Hsueh et al., 2009).

As opposed to online crowdsourcing, situated crowdsourcing deals with tasks
that need to be executed offline (in-situ) (Hosio et al., 2014). It has been
applied to the estimation of queue size (Goncalves et al., 2016), the grading
of exams (Heimerl et al., 2012), opinion polling (Hosio et al., 2015), and the
gathering of collective emotions (Goncalves et al., 2014).

A number of mobile crowdsourcing platforms have emerged recently (e.g.,
TaskRabbit, GigWalk, OpenStreetMap), and research in the area has followed (Good-
child, 2007; Sheppard et al., 2014; Teodoro et al., 2014). Many of those systems
suffer from low geographic coverage (Haklay, 2010; Quattrone et al., 2014) and
uneven spatial distribution of contributions (Mashhadi et al., 2013; Teodoro
et al., 2014).
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5.2. Task-to-crowdworker assignment

One of the initial steps in crowdsourcing is to assign tasks to crowd-workers.
Several strategies to do so have been recently proposed. The assumption is
often that a central authority with global knowledge coordinates the assignment.
Under that assumption, (Kazemi and Shahabi, 2012) maximized the number
of assigned tasks; (Li et al., 2015) minimized the cost of crowd-workers; (Ho
et al., 2013) matched the maximum number of tasks crowd-workers are willing
to perform; and (Shirani-Mehr et al., 2009) broke the assignment into two steps:
in the first step, the set of points in the city are selected, and, in the second
step, the selected points are assigned to users (users submit information to the
platform about their starting point, destination and maximum available time
to spend, and the platform assigns users to the optimal paths).

Another way of assigning tasks is to account for the abilities and skills of
crowd-workers.  (Reddy et al., 2010) proposed a recruitment framework to
identify skilled users. The selection of users is done based on their past where-
abouts and availability. In a similar way, our work has used the number of
positive feedbacks (i.e., picture favorites) to identify skilled contributors. This
is a conservative choice. To see why, consider that previous work (Schifanella
et al., 2015) has found not only that, as one would expect, quality and popular-
ity in Flickr pictures are correlated on average (rank correlation 0.4), but also
that pictures with many favorites were of quality. Nothing could be said about
pictures with no favorite: they were of high quality as much as of low qual-
ity. Therefore, considering only the contributors with a considerable number of
favorites is a conservative approach.

5.8. Incentive allocation

After assigning tasks to crowd-workers, those workers need to be incentivized
somehow to carry out those tasks (Restuccia et al., 2015). Under the assumption
of a centralized platform, traditional auction models have been applied to mobile
crowdsourcing (Lee and Hoh, 2010; Jaimes et al., 2012; Luo et al., 2014), in which
workers bid for their prices. Then, as a further incentive, Peng et al. proposed
to pay workers depending on the estimated quality of their contributions (Peng
et al., 2015)

There are a few works that combine those two steps: task-to-crowdworker
assignment, and incentive allocation. In (Gao et al., 2015)’s work, the platform
selects a set of workers, and those workers are compensated based on a Lyapunov
based VGC auction policy. In (He et al., 2014)’s proposal, instead, the service
provider selects a set of workers based on estimated quality and willingness to
travel, and those workers bargain their compensation with the platform.

Our work has proposed a new framework that combines task-to-crowdworker
assignment and incentive allocation, and it does so to optimally allocate tasks
while ensuring high geographic coverage and high task quality.

17



6. Conclusion

We have proposed a framework that incentivizes social media users to per-
form mobile crowdsourcing tasks. First, user information is extracted from
publicly available social media profiles. Then, this information guides the as-
signment of tasks to users who, in turn, receive monetary incentives to com-
plete the tasks. Algorithms for the assignments of tasks and payments are
proposed under different application scenarios, i.e., with or without complete
spatio-temporal information about potential contributors, with take-it-or-leave-
it offers or offers with multiple alternatives. Upon real datasets, our evaluation
has shown that, compared to schemes unaware of user skills, those algorithms
significantly enhance contribution quality.

There are several ways this work could be extended. First, one could ex-
plore alternative ways of modeling the likelihoods that workers will complete
their tasks. For example, tasks could be broken down into attributes, and those
likelihoods will depend on the extent to which the composing attributes match
each user’s needs Karaliopoulos et al. (2016). Second, one could explore addi-
tional objective functions. Ours maximized the aggregate expected quality and,
as such, is a “social welfare” type of function; alternatively, one could minimize
payments to workers given some quality guarantees. Finally, one could produce
further quantitative results about the applicability of our framework to plat-
forms other than Flickr. In theory, any platform that comes with quality scores
related to geo-referenced contributions could be fit for purpose. In practice,
we expect that geographically-salient (e.g., Facebook Places) and hyper-local
platforms (e.g., TripAdvisor) might lend themselves to our analyses more than
what generic online platforms (e.g., Twitter) might do.
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Appendix A.

Derivation of payments under the water filling algorithm (5)

If X is the Lagrange multiplier for the equality constraint in (5) and us,¢ = 1,..., N
are the KKT multipliers for the inequality constraints, the Lagrangian function is
written as

N
N — (v Pops
L(p7)‘7/j) = _Zqi(l_e o 9% P”))
i=1
N N
+ NOQ_pi—By) = > wipi (A1)
i=1 i=1

with A > 0 and p; > 0.
The first-order necessary KKT conditions for the existence of an optimum require
that, for every i:

IL(p, X, i)
Ipij
N 7qi,y§76_(’Y?ai,j+’YfPij) + X\ — i =0,

VpL(p, A, i) = 0 —0 (A2)

and
HiPis = 0. (AS)
Solving for u;, we get:

i = Xy — gyt T e, (A4)

Eq.(A.3) implies three possible combinations of the values of p;; and u;, which leads
to as many possible cases for Equation (A.4):

1. pi; > 0 and p; = 0. This implies that

1. a?
= pij = 77[1717)\; — 5 i)
1

(Yt P
A\ = qz"Yfe (Vi aijt+; pig)

Since pi; > 0, it also holds that \; < gy e .
2. pi; =0 and p; > 0. This implies \; > que*”g“ij.
3. = qi’yfe*ﬁ“”. In that case, replacing in (A.3), we obtain that p;; = 0.

The combination of those three cases yields the formulation in (5).
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