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Abstract
An occupation is comprised of interconnected tasks, and it is these tasks, not occupations themselves, that are affected by Artificial 
Intelligence (AI). To evaluate how tasks may be impacted, previous approaches utilized manual annotations or coarse-grained 
matching. Leveraging recent advancements in machine learning, we replace coarse-grained matching with more precise deep 
learning approaches. Introducing the AI Impact measure, we employ Deep Learning Natural Language Processing to automatically 
identify AI patents that may impact various occupational tasks at scale. Our methodology relies on a comprehensive dataset of 17,879 
task descriptions and quantifies AI’s potential impact through analysis of 24,758 AI patents filed with the United States Patent and 
Trademark Office between 2015 and 2022. Our results reveal that some occupations will potentially be impacted, and that impact is 
intricately linked to specific skills. These include not only routine tasks (codified as a series of steps), as previously thought but also 
nonroutine ones (e.g. diagnosing health conditions, programming computers, and tracking flight routes). However, AI’s impact on 
labor is limited by the fact that some of the occupations affected are augmented rather than replaced (e.g. neurologists, software 
engineers, air traffic controllers), and the sectors affected are experiencing labor shortages (e.g. IT, Healthcare, Transport).
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Significance Statement

We introduce the Artificial Intelligence Impact (AII) measure∗, utilizing Deep Learning Natural Language Processing to automatically 
identify AI patents affecting occupational tasks. Our findings reveal that: 

1. AI’s impact on occupations defies simple categorizations of task routineness. It intricately affects specific skills within tasks, from 
routine (e.g. scanning items) to nonroutine (e.g. decision-making under stress by air traffic controllers), challenging the assump-
tion that only routine tasks are susceptible.

2. AI’s impact on labor may be limited by the fact that some of the affected occupations are augmented rather than replaced, and 
some of the sectors affected are experiencing labor shortages.
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Introduction
The rapid advancement of Artificial Intelligence (AI) has undeniably 
created new business opportunities (1) but has also reshaped the la-
bor market (2–5), simultaneously reducing hiring in non-AI posi-
tions and altering the skill requirements of remaining job postings 
(6). Exemplifying this phenomenon, the manufacturing sector has 
witnessed the automation of previously human-intensive assembly 
line tasks, while chatbots and virtual assistants have taken over 
routine inquiries and support functions in customer services (7). 
Recent AI advances, including generative AI, may further (re)shape 
occupations over the long term, fueling growth in certain sectors 
and eroding others (8). AI automation has not only streamlined 
processes but has also generated economic benefits (9), enabling 
companies to allocate resources more effectively and to redirect 
human capital towards higher-value, creative, and complex 

tasks—(re)skilling and upskilling their workforce (10). However, this 
transformation has given rise to divergent viewpoints, with some 
scholars arguing for a future characterized by AI occupation dis-
placement and mass unemployment (11, 12), while others posit 
that the AI revolution has the potential to enhance both productiv-
ity and quality of work (13).

Previous literature on AI impact on occupations has primarily 
focused on two classes of methodologies. The first measures the 
impact of AI on occupations. More specifically, it breaks down 
occupations into a finite set of abilities (e.g. manual dexterity, 
persuasion) and measures the impact on those abilities. Two ex-
amples that illustrate this approach are the Frey and Osborne’s 
(14) method and the AI Occupational Exposure (AIOE) method 
(3). Frey and Osborne’s method uses nine abilities extracted 
from O*NET database, covering 70 occupations that were 
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manually labeled and extended with a classifier to 702, including 
roles like clergy, dentists, and chief executives. In contrast, AIOE 
uses 52 abilities derived from the O*NET database, focusing on 
10 Electronic Frontier Foundation (EFF) applications such as im-
age and speech recognition, and language modeling. However, 
both of these methods share a common limitation. Their reliance 
on coarse-grained abilities in the computation of AI’s impact may 
not fully capture the nuances of AI. Consider, for example, the ability 
of information ordering. Methods based on abilities may categorize 
tasks that involve organizing information in the same way, without 
distinguishing between the highly structured and complex informa-
tion ordering required for database design and the simpler, routine 
information tasks of librarians such as alphabetizing files (15).

The second class of methodologies measures the impact of AI 
on tasks rather than occupations. This concept is illustrated by 
Brynjolfsson et al.’s Suitability for Machine Learning (SML) method 
(2), which measures the impact of AI using a comprehensive set of 
18,156 tasks spanning 964 different occupations. However, SML 
relies on the assessments of crowdworkers to determine the suit-
ability of specific tasks for machine learning. This reliance may 
introduce subjective biases from annotators (e.g. varying levels 
of expertise or cultural factors may lead to inconsistencies), and 
poses challenges in terms of scalability. Also, similar to Frey and 
Osborne’s and AIOE, SML is limited by the static nature of its one- 
time manual labeling. As technology advances and new capabil-
ities emerge such as Large Language Models (LLMs), relying solely 
on a fixed set of abilities or subjective assessments of task suitabil-
ity for automation becomes increasingly inadequate. For ex-
ample, a copywriter is likely to be impacted by LLMs (16). 
However, if one were to examine copywriters at different points 
in time, such as in 2010 or 2015, the impact of AI on them would 
not be constant but would drastically change since language mod-
els were not as powerful back in 2010 as they are today. To fully 
capture the impact of a fast moving technology such as AI, there-
fore, it is crucial for methods to be adaptable to the ever-evolving 
technological advancements. To gauge the likelihood of automa-
tion, it is essential to identify which systems are poised for con-
struction and commercialization. Annual business surveys serve 
as a source for measuring the adoption of automation. However, 
they may be subject to biases (e.g. respondents may over-report 
positive aspects, prioritize certain business operations, potential-
ly neglect others, and interpret survey questions subjectively 
without standardized criteria) and are infrequently updated (17). 
An alternative, more objective source is patents. Patents are a typ-
ical source in scholarly work to identify emerging technological 
innovations (18–20). Prior work used patents to study the effect 
of automation and employment changes (21, 22). By analyzing 
the text of US patents granted between 1976 and 2014, Mann 
et al. (22) showed that the effect of automation differs across sec-
tors. For example, the manufacturing industry, where most robots 
are used, experienced employment losses, while the service sector 
experienced employment gains; a finding that aligns with those 
reported by Autor and Dorn (23). More broadly, patents provide in-
sights into emerging systems and technologies (24), leading Webb 
to study AI innovations by comparing occupational task descrip-
tions with patent titles (5). This method employs a dictionary ap-
proach to identify verb–noun pairs associated with both tasks and 
patent titles. Another method, similar in its approach to Webb’s 
term matching, employs a normalized term matching approach 
to determine the similarity between tasks and patents (25), and 
does so in the specific area of robotics rather than AI. The method 
most similar to ours was proposed in (26, 27), in which, using word 
embeddings, patents are matched with broad occupation 

categories from the American Community Survey. However, 
that level of categorization is not suitable for researching the 
characteristics of specific jobs. Overall, this second class of ap-
proaches has used either term matching or word embedding. 
The problem is that term matching does not capture the semantic 
meaning of words (e.g. it does not distinguish between “bank” as in 
“data bank” or as in a financial institution) (28), and word embed-
ding does not account for word ordering (e.g. “data entry and ana-
lysis” and “analysis of entry data” are considered similar based on 
word embeddings yet are two different tasks). As a result, these 
methods either miss relevant patents or return spurious task–pa-
tent matches, as detailed in Tables S5 and S6.

To overcome these limitations, we introduced and validated 
the AI Impact (AII) measure. AII utilizes 19,259 task descriptions 
from O*NET and assesses AI’s potential impact through innova-
tions found in 24,758 AI patents filed with the United States 
Patent and Trademark Office (USPTO) from 2015 to 2022. Built 
on Sentence-T5 (ST5)(29), a natural language processing-focused 
deep learning framework (Fig. 1),  the method gauges semantic 
similarity between occupation task descriptions and patent de-
scriptions (explained in “Datasets”) by embedding not individual 
words but the entire document (e.g. the entire patent’s abstract), 
allowing for considering both semantic meaning and word order-
ing. The AII score is calculated in three steps. Firstly, the method 
identifies the most similar patent for each task based on max-
imum cosine similarity. Secondly, it categorizes a task as 
AI-impacted if its similarity with the most similar patent sur-
passes a threshold at the 90th percentile, as previous literature 
suggested (24) and this work further empirically validated (see 
“Task–Patent Matching” in Supplementary Material). We select, 
for each task, the closest patent rather than counting the number 
of closely linked patents. This approach provides a more targeted 
understanding of the specific innovations or solutions directly 
relevant to that particular task, avoiding dilution of the analysis 
with potentially less pertinent or peripheral patents. Also, given 
that patents can be general, our approach addresses this by using 
the text not only in titles, as previous approaches did (5), but also 
in abstracts, which are more likely to contain application domains 
or references to specific tasks (illustrated in Table S4). Finally, the 
AII score for an occupation is computed by dividing the number of 
tasks impacted by AI patents by the total tasks for that occupation 
(as detailed in “Measuring AI Impact (AII) on Occupation Tasks”). 

Fig. 1. Framework automating AII measure. Using the Sentence-T5 (ST5) 
model, we first generated two vector representations (embeddings): one 
capturing the semantic meaning of an AI patent, and the other the 
semantic meaning of a task description. We then computed the patent– 
task cosine similarity from the embeddings on all patent–task pairs. This 
process was conducted to identify which tasks were impacted by which AI 
patents. Finally, for each occupation, we calculated the proportion of 
impacted tasks out of the total ones, and this proportion determined the 
AII of that occupation.
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For insights into AI’s economic ramifications, the method aggre-
gates AII scores for each occupation at industry sector-level.

Results
Validation with historically impacted occupations
To begin to understand the nature of the AII score, we first vali-
dated it empirically through two historical case studies: robots 
and software. We chose them for three reasons. First, their intro-
duction into the labor market has been associated with reductions 
in employment and wages (30, 31). Second, due to the recent 
emergence of these technologies, they are likely to provide in-
sights into how the economy may respond to the introduction of 
AI. Lastly, these two historical cases have been used in previous 
works to empirically assess methodologies similar to ours (5), of-
fering a basis for comparison.

We therefore adjusted the AII score to encompass exposure to 
robots and software rather than AI (as detailed in “Impact of 
Robots and Software” of Supplementary Material) by focusing on 
patents related to these two technologies. We studied how robot 
and software exposure affected employment and wages using 
US census data from 1980 to 2010. Following Webb’s methodology 
(5), which controlled for industry effects, educational levels, wage 
polarization, and off-shorability, we found that introducing robots 
led to a 9% decrease in employment and a 4% decrease in wages, 
and that introducing software resulted in a 10% decrease in em-
ployment and a 7% decrease in wages during this period. These 
findings align with Webb’s, indicating that occupations exposed 
to robots or software have decreased in number and pay lower 
wages. However, Webb’s method, which relies on keyword match-
ing, sometimes includes patents that should not be matched with 
certain job tasks (as detailed in “Previous Attempts to Link Tasks 
to Patents” in Supplementary Material), leading to larger de-
creases and an overestimation of AI’s potential impact compared 
to our estimates.

Most- and least-impacted occupations
We compared the potentially most-impacted (highest AII scores) 
occupations with the least-impacted (lowest AII scores) occupa-
tions (Table 1 only reports the 20 most- and least-impacted occu-
pations for brevity and comparability with previous methods), 
and did so by thematically analyzing the AI patents associated 
with the tasks of each group’s occupations (as described in 
“Thematic Analysis on Occupations and Industry Sectors”).

Most-impacted occupations
The highest-impact occupations mainly consist of white-collar oc-
cupations such as cardiovascular technicians, sound engineers, 
nuclear medicine technologists, air traffic controllers, and magnet-
ic resonance imaging technologists. Indeed, the AII score, binned 
by education levels from high school to Master of Sciences, shows 
that the highest impact is seen for jobs requiring degrees from 
community colleges or Bachelor’s degrees (Fig. 2) rather than 
high school diplomas or lower qualifications. Highest-impacted oc-
cupations are primarily found in the healthcare, information tech-
nology, and manufacturing. Their tasks can be completed in a very 
specific sequence, and the inputs and outputs of these tasks can be 
expressed in a machine-readable format. To see how, we examined 
the types of tasks that patents have automated, and organized the 
patents into three themes: healthcare, information technology, and 
manufacturing (Table 2). For the theme of healthcare, from 2015 to 
2022, 60% of the tasks done by cardiovascular technologists and 

48% of those done by magnetic resonance imaging (MRI) technolo-
gists have been impacted by patents automating health records’ 
management and analyzing MRI scans. In addition to the advanced 
healthcare occupations, we observed a significant number of pat-
ents impacting less skilled healthcare personnel including, for ex-
ample, patents recording and evaluating patient questionnaires. 

Table 1. 20 most- and least-impacted occupations ranked by the 
Artificial Intelligence Impact (AII) measure.

Rank Most-impacted Least-impacted

1 Cardiovascular Technologists 
and Technicians

Pile Driver Operators

2 Sound Engineering Technicians Dredge Operators
3 Nuclear Medicine Technologists Aircraft Cargo Handling 

Supervisors
4 Air Traffic Controllers Graders and Sorters, 

Agricultural Products
5 Magnetic Resonance Imaging 

Technologists
Insurance Underwriters

6 Electro-Mechanical and 
Mechatronics Technologists 
and Technicians

Floor Sanders and Finishers

7 Orthodontists Reinforcing Iron and Rebar 
Workers

8 Power Distributors and 
Dispatchers

Farm Labor Contractors

9 Neurologists Administrative Services 
Managers

10 Industrial Truck and Tractor 
Operators

Rock Splitters, Quarry

11 Public Safety 
Telecommunicators

Brokerage Clerks

12 Computer Numerically 
Controlled Tool Programmers

Podiatrists

13 Security Guards Helpers–Painters, 
Paperhangers, Plasterers, 
and Stucco Masons

14 Remote Sensing Scientists and 
Technologists

Shipping, Receiving, and 
Inventory Clerks

15 Machinists Cooks, Short Order
16 Radiologists Team Assemblers
17 Atmospheric and Space 

Scientists
Proofreaders and Copy 

Markers
18 Computer Numerically 

Controlled Tool Operators
Butchers and Meat Cutters

19 Textile Knitting and Weaving 
Machine Setters, Operators, 
and Tenders

Door-to-Door Sales Workers, 
News and Street Vendors, 
and Related Workers

20 Medical Transcriptionists Segmental Pavers

Fig. 2. AII score binned by the level of education: high school, associate 
degrees from community colleges, bachelor’s degrees, and master’s 
degrees in science. This binned score was obtained by averaging the 
scores across all occupations in a given education category, weighted by 
the total employment for those binned occupations.
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Table 2. The most-impacted occupations based on AII scores.

Rank Occupation Sector Task Patent Similarity # 
Impacted 

Tasks

Total 
Tasks

AII

1 Cardiovascular 
Technologists and 
Technicians

Healthcare Observe gauges, recorder, 
and video screens [· · ·] 
during imaging of 
cardiovascular system.

Automated analysis of 
vasculature in coronary 
angiograms

0.8753 16 25 0.64

2 Sound Engineering 
Technicians

Arts and 
entertainment

Record speech, music, and 
other sounds on recording 
media, using recording 
equipment.

Media capture and process 
system

0.8293 8 14 0.57

3 Nuclear Medicine 
Technologists

Healthcare Process cardiac function 
studies, using computer.

Electrocardiogram analysis 0.8645 9 17 0.53

4 Air Traffic Controllers Transportation Determine the timing or 
procedures for flight 
vector changes.

Constraint processing as an 
alternative to flight 
management systems

0.8298 12 23 0.52

5 Magnetic Resonance 
Imaging 
Technologists

Healthcare Operate optical systems to 
capture dynamic 
magnetic resonance 
imaging (MRI) images [· · ·]

MRI system and method 
using neural network for 
detection of patient motion

0.8615 12 23 0.52

6 Electro-Mechanical and 
Mechatronics 
Technologists and 
Technicians

Manufacturing Train robots, using artificial 
intelligence software or 
interactive training 
techniques [· · ·]

Backup control based 
continuous training of 
robots

0.8846 18 35 0.51

7 Orthodontists Healthcare Study diagnostic records, 
such as medical or dental 
histories [· · ·] to develop 
patient treatment plans.

Patient-Specific Therapy 
Planning Support Using 
Patient Matching

0.8460 5 10 0.50

8 Power Distributors and 
Dispatchers

Utilities Control, monitor, or operate 
equipment that regulates 
or distributes electricity or 
steam [· · ·]

Power grid aware machine 
learning device

0.8562 7 15 0.47

9 Neurologists Healthcare Interpret the results of 
neuroimaging studies, 
such as [· · ·] Positron 
Emission Tomography 
(PET) scans.

Pet quantitative localization 
system and operation 
method thereof

0.8352 11 24 0.46

10 Industrial Truck and 
Tractor Operators

Manufacturing Move controls to drive 
gasoline- or 
electric-powered trucks, 
[· · ·]

Autonomous Truck 
Unloading for Mining and 
Construction Applications

0.8301 5 11 0.45

11 Public Safety 
Telecommunicators

Public 
administration

Test and adjust 
communication and 
alarm systems, and report 
malfunctions to 
maintenance units.

Security-Relevant Diagnostic 
Messages

0.8237 8 18 0.44

12 Computer Numerically 
Controlled Tool 
Programmers

Manufacturing Determine the sequence of 
machine operations, and 
select the proper cutting 
tools [· · ·]

Methods and apparatuses for 
cutter path planning and 
for workpiece machining

0.8376 7 16 0.44

13 Security Guards Administrative & 
support 
services

Operate detecting devices to 
screen individuals and 
prevent passage of 
prohibited articles into 
restricted areas.

Touchless, automated and 
remote premise entry 
systems and methods

0.8566 6 14 0.43

14 Remote Sensing 
Scientists and 
Technologists

Manufacturing Develop automated 
routines to correct for the 
presence of image 
distorting artifacts, such 
as ground vegetation.

Method for plantation 
treatment based on image 
recognition

0.8413 10 24 0.42

15 Machinists Manufacturing Machine parts to 
specifications, using 
machine tools, such as 
lathes, milling machines, 
shapers, or grinders.

Machining equipment system 
and manufacturing system

0.8440 12 29 0.41

(continued) 

4 | PNAS Nexus, 2024, Vol. 3, No. 9

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/3/9/pgae320/7758639 by guest on 24 Septem

ber 2024



For the theme of information technology, over the same five years, 
47% of tasks done by software developers and 40% of those done 
by computer programmers have been impacted by patents auto-
mating programming tasks and developing workflows. For the 
theme of manufacturing, over the same 5 years, 45% of tasks 
done by truck and tractor operators and 40% of earth drillers’ tasks 
have been automated. These automated tasks are planning proc-
esses such as water-well drilling rigs and driving through electric- 
powered trucks.

Studies on long-haul truck driving show that truckers are not 
being replaced by AI (32). Instead, they are now using smart technol-
ogy that monitors their health, like smartwatches and advanced 
health devices. Previous research did not account for these new tech-
nologies that came out over the years (3). Our score, on the other 
hand, is adjusted based on new innovations, so it changes over time.

By analyzing the annual increase in impacted tasks and exam-
ining the most frequently occurring words in patents’ abstracts 
each year (Fig. 3), we identified two categories of highly impacted 
occupations. The first category includes occupations that experi-
enced a sudden impact, while the second category includes occu-
pations that faced continuous impact over time.

Occupations that underwent sudden impacts are predomin-
antly within the healthcare sector. This impact became most pro-
nounced in 2016, when eight new tasks were affected, gradually 
decreasing to just one new impacted task by 2019. In 2016, patents 
began to significantly impact healthcare by automating medical 

imaging and diagnosis through machine learning models, devis-
ing treatment plans and medical devices, and recording and ana-
lyzing patient data. This impact continued into 2017 and 2018, 
although to a lesser degree, focusing on predicting optimal radi-
ation therapy doses, dental treatment plans, and processing med-
ical patient data.

Occupations that sustained continuous impact over time are pri-
marily in information technology and manufacturing. In the infor-
mation technology sector, occupations such as software developers, 
and in manufacturing, occupations such as earth drillers, saw con-
sistent increases from zero new impacted tasks in 2016 to six new 
impacted tasks in 2019. In information technology, the potential im-
pact of patents became noticeable in 2017 when they began training 
robots to design and execute iterative tests on chemical samples, 
working on aerial and satellite imagery to create products such as 
land cover maps, and implementing speech recognition and natural 
language processing on audio. This impact steadily rose and ex-
tended into 2022, with patents integrating machine learning into 
software systems, automating tasks such as troubleshooting net-
works and code reviews. In manufacturing, patent potential impact 
emerged in 2018, focusing on optimizing supply chain logistics and 
planning material dumping operations. This impact persisted into 
2022, further supporting predictive maintenance and operational 
optimization such as determining aircraft conditions, with patents 
integrating reinforcement learning and other advanced neural 
networks.

Table 2. Continued  

Rank Occupation Sector Task Patent Similarity # 
Impacted 

Tasks

Total 
Tasks

AII

16 Radiologists Healthcare Perform or interpret the 
outcomes of diagnostic 
imaging procedures 
including magnetic 
resonance imaging (MRI), 
computed tomography 
(CT), positron emission 
tomography (PET), [· · ·]

Systems and methods for 
integrating tomographic 
image reconstruction and 
radiomics using neural 
networks

0.8569 7 17 0.41

17 Computer Numerically 
Controlled Tool 
Operators

Manufacturing Implement changes to 
machine programs, and 
enter new specifications, 
using computers.

Registering collaborative 
configuration changes of a 
network element in a 
blockchain ledger

0.8370 11 27 0.41

18 Atmospheric and Space 
Scientists

Scientific and 
technical 
services

Analyze historical climate 
information, such as 
precipitation or 
temperature records, to 
help predict future 
weather or climate trends.

Combining forecasts of 
varying spatial and 
temporal resolution

0.8429 11 27 0.41

19 Textile Knitting and 
Weaving Machine 
Setters, Operators, 
and Tenders

Manufacturing Set up, or set up and operate 
textile machines that 
perform textile processing 
[· · ·]

Parameter Manager, Central 
Device and Method of 
Adapting Operational 
Parameters in a Textile 
Machine

0.8477 8 20 0.40

20 Medical 
Transcriptionists

Healthcare Transcribe dictation for a 
variety of medical reports 
[· · ·]

Methods for improving 
natural language 
processing with enhanced 
automated screening for 
automated generation of a 
clinical summarization 
report and devices thereof

0.8367 6 15 0.40

Each occupation’s score is calculated as the number of impacted tasks divided by the total number of tasks for that occupation. For each occupation, a task–patent 
pair is presented, corresponding to the most-impacted task by the patent (i.e. the patent with the highest similarity score to the task) which is determined by 
calculating the textual similarity between the task’s description and a patent’s title plus abstract.
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Least-impacted occupations
The least-impacted occupations mainly consist of blue-collar occu-
pations such as pile-driver operators, dredge operators, aircraft car-
go handling supervisors, agricultural graders and sorters, and 
insurance underwriters. Again, the AII score, binned by education 
levels, shows that the lowest impact is seen for jobs requiring a 
high school diploma or less (Fig. 2). These occupations are primarily 
found in agriculture, transportation, accommodation and food 
services, and construction sectors, where the core tasks and respon-
sibilities revolve around physical and manual labor and typically do 
not require a wide range of complex mental or physical activities, 
nor do they involve abstract reasoning. In agriculture, least- 
impacted tasks involve food inspection and dairy management for 
livestock. In transportation, such tasks involve scheduling and re-
source allocation for airline operations, engine sound control, and 
vehicle dispatching. In accommodation and food services, tasks in-
clude monitoring and recording food temperatures. In construction, 
such tasks involve the maintenance and operation of equipment 
and machinery. In addition to these sectors, by examining occupa-
tions with nearly zero AII scores, we found another least-impacted 
set of occupations: managerial ones. Contrary to the previous least- 
impacted occupations which involve manual labor or dexterity, 
managerial occupations typically require human interactions, and 
scarce expert knowledge tacitly acquired over years of experience, 
having tasks ranging from contract negotiation to proposal review 
to internal assessments and audits. Overall, AI’s impact on occupa-
tions is limited because: (i) some occupations are augmented by AI 
rather than replaced and (ii) the industries being affected already 
have a shortage of workers.

Augmented rather than replaced occupations
Our AII captures AI’s potential for automation. However, previous 
work has differentiated between automation and augmentation. 
To account for that, we implemented Autor et al.’s method (26) to 
compute AI’s potential for augmentation (explained in “Materials 
and methods”). We found that certain occupations will not be 

replaced by AI, but instead will be augmented by it (top left quad-
rant in Fig. 4). For example, the role of a hearing aid specialist in-
volves a significant human element, especially in understanding 
and responding to patients’ emotional, psychological, and physical 
needs. This is reflected in the lack of patents that match the task of 
“counseling patients and families on communication strategies and 
the effects of hearing loss”; a task that requires empathy and emo-
tional intelligence, which is likely no current AI innovation can 
automate. Another example is that of electrical and electronics re-
pairers, which relies heavily on technical skills, detailed knowledge, 
and hands-on interaction. Consider that occupation’s task of “con-
sulting with customers, supervisors, or engineers to plan the layout 
of equipment or to resolve problems in system operation or main-
tenance”. While automation can assist in some aspects, human ex-
pertise and decision-making are crucial. This task has not been 
matched with any patent. In general, for occupations that may be 
augmented by AI, AI will advise, coach, and alert decision-makers 
as they apply expert judgment.

Affected sectors experiencing labor shortages
To ascertain whether AI patents are linked to labor supply con-
straints or to labor demand in a sector, we correlated the AII in-
dustry sector scores with the annual vacancy rates from each 
sector in 2022. We found that AII and vacancy rates are positively 
correlated. After removing the outlier sector of Accommodation 
and Food Services—positioned more than two standard devia-
tions away from the regression line (Fig. S7)—the correlation 
was positive and stronger, with a Pearson’s correlation coefficient 
of r = 0.58 with p = 0.02 (Fig. 5). This suggests that sectors 
potentially impacted by AI are currently experiencing labor 
shortages.

Highly impacted sectors include healthcare, information tech-
nology, and manufacturing, which aligns with our thematic ana-
lysis of tasks within the most-impacted occupations (Fig. 6). These 
sectors have experienced a significantly high rate of impact. From 
the thematic analysis, two possible explanations emerge. The first 
explanation lies in the nature of the tasks within these sectors, 

Healthcare Information Technology Manufacturing

2016
patient, image, planning

2017
module, robot, machine

2018
patient, device, medical

2019
computer, test, state

2020
neural network, data, analysis

2021
control, planning, path

2022
control, image, neural network

Cardiovascular Technologists and Technicians

Nuclear M
edicine Technologists

M
agnetic Resonance Im

aging Technologists

Orthodontists

Neurologists

Radiologists

Atm
ospheric and Space Scientists

Rem
ote Sensing Scientists and Technologists

Sound Engineering Technicians

Public Safety Telecom
m

unicators

Electro-M
echanical Technologists and Technicians

Textile Knitting and W
eawing M

achine Operators

Industrial Truck and Tractor Operators

Com
puter-Controlled Tool Operators

Power Distributors and Dispatchers

Com
puter-Controlled Tool Program

m
ers

M
achinists

Security Guards

0 82 4 6

Number of newly impacted tasks

M
edical Transcriptionists

Air Traffic Controllers

Fig. 3. The number of newly impacted tasks each year for the most affected occupations, combined with the most frequently occurring words in the 
patents influencing those tasks, are organized around the themes of healthcare, information technology, and manufacturing. These were derived 
qualitatively and describe the main themes emerging from the patents. Between 2016 and 2018, patents mentioned “patient”, “image”, “planning”, 
“medical”, “device” matched tasks in healthcare. Between 2019 and 2021, patents mentioned “data”, “analysis”, and “neural networks” matched tasks in 
information technology. Between 2021 and 2022, patents mentioned “control”, “planning”, “path”, “user”, “image”, and “neural network” matched tasks in 
manufacturing.
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which are likely to be replaced by AI-enhanced hardware. For ex-
ample, in healthcare, tasks involving the use of X-rays or MRI 
scans, such as those used by radiologists, have been automated 
by patents on advanced medical equipment and devices. 
Similarly, in manufacturing, tasks that involve the examination 
of chemical or biological samples, such as those performed by 
food science technicians, can now be executed by AI-enhanced 
hardware. The second explanation is that the occupations within 

these sectors entail tasks demanding extensive data analysis and 
processing. In information technology, film editors, for example, 
engage in video data editing, which our patent analysis found to 
have been streamlined by AI-based software. Likewise, scientists 
in healthcare, information technology, or manufacturing often 
handle large volumes of data, and recent patents deal with both 
structured and unstructured data (e.g. using deep-learning for 
computational biology (33)).

Fig. 4. Automation vs. augmentation using patent similarity to tasks and micro-titles defined in the Census Alphabetical Index of Occupations and 
Industries (CAI) (26).

Fig. 5. Job vacancy rates by sector vs. sector-level AII. The sector of Accommodation and Food Services was positioned more than two standard deviations 
away from the regression line (i.e. considered as an outlier) and was removed. The original plot is in Supplementary Material.
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Discussion
Consensus and discrepancies in the literature
Unlike previous methods for assessing the potential impact of AI on 
occupations, which either rely on a finite set of abilities (e.g. manual 
dexterity) linked to specific occupations (3, 14) or employ subjective 
evaluations to determine tasks’ suitability for automation (2), our 
AII measure provides an objective approach by leveraging patent 
data to capture the dynamic landscape of technological advance-
ments in AI.

To position our findings, we explore the consensus or lack 
thereof of which occupations will be potentially impacted by AI 
in the literature.

Consistent results in the literature
Frey and Osborne’s (14), AIOE (3), SML (2), and Webb’s (5) concur that 
low-skilled occupations typically involving human labor are not im-
pacted by AI. These occupations are typically found in industry sec-
tors such as construction, where tasks primarily involve manual 
labor and the operation of machinery. Our AII measure aligns with 
these observations by categorizing such occupations as among the 
least impacted by AI. Least-impacted sectors include construction, 
accommodation and food services, real estate, education, public ad-
ministration, and finance and insurance. These sectors have experi-
enced a significantly low rate of impact. From the thematic analysis, 
three possible explanations emerge. The first explanation centers on 
the fact that occupations within certain sectors are often associated 
with low-skilled or physical/manual labor. For instance, in 

construction, tasks range from assembling solar panels to maintain-
ing pipe systems to operating various drills, all of which require phys-
ical labor. Additionally, manual dexterity is challenging to automate. 
In public administration, numerous occupations, such as police offi-
cers and firefighters, still require manual skills. The second explan-
ation is that occupations within certain sectors demand basic and 
nonspecialized skills. For instance, in accommodation services, the 
tasks of waiters and baristas typically involve minimal specialized 
knowledge or vocational training, such as serving food and drinks. 
Similarly, in real estate, brokers or clerks primarily require training 
in overseeing transactions and handling tasks related to office 
operations.The third explanation is that occupations within certain 
sectors often require a high level of skill and involve extensive inter-
personal interactions. For instance, in managerial positions (e.g. 
CEOs), tasks typically encompass responsibilities such as delegating 
tasks, attending events and meetings, and negotiating contracts—all 
of which heavily rely on human interpersonal communication. 
Similarly, in education, a teacher’s role primarily revolves around de-
livering educational materials in person, a task that demands both 
physical presence and a higher level of education and specialized 
knowledge. In the legal sector, potentially impacted occupations 
include those involved in drafting legal documents or transcribing 
pretrial and trial proceedings, such as court reporters, in alignment 
with previous qualitative analyses on legal occupations (34). 
Conversely, roles requiring the design of bespoke legal solutions 
remain unaffected. Notably, client-facing tasks in the legal sector 
are also not impacted, resulting in an overall expectation of limited 
impact on the legal sector. Finally, in the financial sector, there are 

a

b

Fig. 6. Sector-level AII scores for: a) all sectors; b, left) sectors with lowest rate of change from 2015 to 2022; and b, right) sectors with highest rate of 
change.
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still occupations that necessitate human interactions, such as clerks, 
sales agents, and tellers.

Inconsistent results in the literature
While there has been a clear consensus in previous literature re-
garding manual labor occupations, we have identified four types 
of occupations for which consensus has been so far lacking. 
These categories include: occupations requiring basic and non-
specialized skills; occupations requiring high skills and interper-
sonal interaction-based occupations; those where tasks are 
replaced by AI-enhanced hardware; and those involving extensive 
data analysis and processing. Occupations that require basic and non-
specialized skills (least impacted according to our approach). Frey and 
Osborne’s findings (14) indicated that occupations within the ac-
commodation and food services sector (e.g. cooks, dishwashers, 
waiters, bartenders) are highly impacted. Similarly, Webb’s find-
ings suggest that nonroutine manual occupations are highly im-
pacted; there are patents matching those occupations, which 
may well be coarse-grained matches, as exemplified in Table S5. 
However, SML (2) and AIOE (3) found the very same occupations 
to be among the least-impacted. Our approach aligns with SML 
and AIOE, identifying these occupations as among the least- 
impacted due to the absence of AI patents automating the manual 
tasks associated with them. Occupations that are highly skilled and in-
volve interpersonal interactions (least impacted according to our ap-
proach). AIOE (3) found that occupations requiring high skills and 
interpersonal interactions, such as those in the education sector 
(e.g. teachers) or managerial positions (e.g. CEOs), are highly im-
pacted. Similarly, Webb found that occupations that require 
interpersonal tasks are hard to automate (5). In contrast, SML (2) 
found these occupations, particularly managerial positions, to 
be among the least impacted, aligning with Frey and Osborne’s 
method (14). However, in the case of SML, there was a distinction 
within occupations involving interpersonal interactions. While 
SML found managerial positions to be among the least impacted, 
it identified occupations such as concierges, which also involve 
interpersonal interactions, as more likely to be impacted by AI. 
Upon closer examination of the SML method, which relies on ru-
brics (i.e. a type of scoring guide for crowdworkers to assess the 
suitability of tasks for machine learning, as shown in Table S2), 
we noted that the corresponding definition in the rubrics entailed 
a “wide range of interactions,” making it challenging to capture 
their nuances. Additionally, since SML relies on crowdsourced 
data, there is a potential for subjective bias or a lack of full under-
standing of the nuances of interpersonal interactions. Finally, in-
teractions were captured by only one item out of the 23 items in 
the rubrics making that item’s contribution to the overall score 
limited. Our approach aligns with Frey and Osborne’s (14), 
Webb’s (5) and, to some extent with SML (2) as no AI patents 
were found to target these occupations. Occupations that consist of 
tasks that are replaced by AI-enhanced hardware (most impacted accord-
ing to our approach). Frey and Osborne (14) discovered that occupa-
tions in healthcare, such as MRI and cardiovascular technologists, 
which are likely to be replaced by AI-enhanced hardware, were 
among the least-impacted. In contrast, SML (2) and AIOE (3) iden-
tified these same healthcare occupations as among the 
most-impacted ones. Webb (5) found that occupations involving 
nonroutine manual tasks (e.g. operating devices or equipment in 
healthcare or manufacturing) to be among the most-impacted 
ones. Our approach aligns with SML, AIOE, and Webb’s method 
due to the presence of AI patents automating tasks using 
AI-enhanced hardware. For example, in healthcare, patents 

have automated tasks such as medical imaging and diagnosis us-
ing machine learning models, the development of treatment 
plans, the creation of medical devices, the recording and analysis 
of patient data, and even the prediction of optimal radiation ther-
apy doses, dental treatment plans, and the processing of medical 
data. Occupations that require extensive data analysis and processing 
(most impacted according to our approach). Frey and Osborne (14) 
found that occupations that require extensive data analysis and 
processing, such as those in information technology or manufac-
turing (e.g. software developers, chemists, aerospace engineers), 
were classified as among the least-impacted. In contrast, SML (2) 
and AIOE (3) categorized these very same occupations as among 
the most-impacted. Similarly, Webb (5) identified that occupa-
tions involving nonroutine cognitive analytic tasks to be among 
the most-impacted ones. Our findings align with SML, AIOE, and 
Webb’s method due to the presence of patents related to tasks 
that require data analysis and processing. For example, patents 
about training robots for task execution, image and video process-
ing, speech recognition, and natural language processing, as well 
as the integration of machine learning into software systems. 
These patents automate tasks such as troubleshooting networks, 
code reviews, optimizing supply chain logistics, planning material 
dumping operations, and supporting maintenance, including de-
termining aircraft conditions. Our findings are further confirmed 
by recent works studying the potential exposure of occupations 
and tasks to Generative AI (35, 36). They found that Generative 
AI will potentially impact high-skilled, intellectual, or creative 
professions (e.g. mathematicians, writers, and translators), where 
these models can effectively augment capabilities in data ana-
lysis, writing, and language translation.

Implications
The impact of AI on occupations carries important implications 
for the workforce. However, when placed our findings within the 
context of previous literature, it became evident that there is a 
lack of consensus regarding which occupations will be affected 
and which will remain unaffected. As an initial step, we contend 
that achieving consensus is crucial to start formulating effective 
policies to address the ongoing transformations in the labor mar-
ket. To initiate this process, with our findings in mind, we outline 
three key areas in which initiatives can be developed.

Initiatives for white-collar workers
Policymakers and employers should launch specific initiatives 
targeting white-collar occupations in sectors such as information 
technology, manufacturing, and healthcare. These initiatives can 
equip workers with the skills needed for high-value, creative, and 
complex tasks. For example, a manufacturing worker can under-
go training in robotics programming, enabling them to effectively 
operate and maintain AI-driven machinery. Similarly, healthcare 
professionals can acquire telemedicine and data analytics skills to 
enhance patient care and diagnostics.

Initiatives for blue-collar workers
Blue-collar occupations, predominantly found in agriculture, ac-
commodation and food services, and construction, typically in-
volve low-skilled work demanding physical labor. While 
previous literature has suggested reallocating low-skilled workers 
to tasks less susceptible to computerization (14), such as those re-
quiring creative and social intelligence, we argue that (re)skilling 
and upskilling (10) should be approached cautiously. That is 

Septiandri et al. | 9
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/3/9/pgae320/7758639 by guest on 24 Septem
ber 2024

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae320#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae320#supplementary-data


because regions that excessively rely on knowledge-based econ-
omies are likely to face significant AI impact.

Initiatives for continuous learning and interdisciplinary 
training
Promoting a culture of continuous learning and skill development 
is essential. Employers can encourage individuals to embrace life-
long learning through online courses, certifications, and vocation-
al training, enabling them to adapt to the changing occupational 
landscape (37). Similarly, encouraging interdisciplinary training 
can prepare the workforce for the demands of AI-augmented oc-
cupations. For example, blending traditional engineering with AI 
and machine learning training can create a workforce capable of 
developing and maintaining AI-enhanced systems across sectors.

Limitations and future work
This work has five primary limitations. First, our analysis is con-
ducted on an annual basis and assumes that the tasks associated 
with a given occupation in the O*NET database remain consistent 
across all versions within the same year.

Second, our method relies on patent abstracts to provide a finer- 
grained understanding of occupational tasks, mainly from the 
US-focused USPTO dataset. Despite the most significant innova-
tions are typically patented in all major patent jurisdictions (22), 
the US holds a distinct position. In 2014, nearly a quarter of the ap-
proximately 10.9 million patents worldwide were granted in the 
United States, highlighting its significant share (38). However, 
more recently, Carbonero et al. (39) and Guarascio et al. (40) studied 
the potential impact of AI on occupations in Southeast Asia and 
Europe. Unlike our method, their methods relied on manual anno-
tations to determine the suitability of specific tasks for machine 
learning. We therefore calculated the AII score based on US patents 
alone and compared it with the AII score from patents combined 
from the United States, China, Japan, and South Korea, finding 
them to be highly correlated (r = 0.93), leaving our results unaffect-
ed. However, future research should still replicate our method and 
explore potential cultural differences in how patents are written 
and used in other contexts, not least in the European Union.

Third, it is important to acknowledge that the existing portfolio 
of USPTO patents may not comprehensively cover all the innova-
tions that may impact a particular occupation. To address this 
limitation, one potential approach could involve supplementing 
patent data with other sources, including research papers and 
code repositories (41).

Fourth, our assumption is that the likelihood of an AI system 
being built is determined by whether it is patented. While gener-
ally true, there are exceptions. A patented system may not be 
built, as the patent could be intended for defensive or offensive 
purposes (42, 43). Conversely, a nonpatented system might still 
be constructed, with its design protected by secrecy or trademarks 
(44, 45). While there are numerous patents for systems designed 
to improve meetings, calendaring, and instant messaging, patents 
focused on interpersonal interactions may be less common. 
However, even if these patents do not directly threaten jobs re-
quiring human interaction, they could still have secondary ef-
fects. For example, if AI significantly affects occupations like 
artists or software developers, managerial positions may become 
less essential due to a reduced workforce needing oversight. Yet, 
our method does not capture such cascading impacts on the job 
market. Furthermore, patenting rates vary among sectors (46), 
and there is a lag between an innovation being patented and its 
use and impacts diffusing across the economy (41).

Finally, our analysis is based solely on a concise yet compre-
hensive 7-year time window, spanning from 2015 to 2022. We 
also repeated the analysis for 2010–2022 and found no significant 
difference in the results (as shown in Table S8 and Fig. S5). This 
does not capture emerging technologies, such as Large Language 
Models (LLMs). Future research could replicate our methodology 
to assess the potential impact of emerging technologies, such as 
cryptocurrency, the metaverse, and LLMs by using upcoming pat-
ents in those fields.

Materials and methods
Datasets
Occupation dataset
We collected detailed task descriptions for a wide range of occu-
pations from the O*NET database (47), a widely used source in oc-
cupational studies (2, 3, 48–50). In total, we collected 759 unique 
occupations and 17,879 unique tasks from O*NET 26.3 version re-
leased in May 2022. The distribution of these tasks ranges from 4 
to 286, with a median of 20 tasks per occupation (Fig. S1).

Patent dataset
To obtain a corpus of AI patents, we first retrieved 74,875 patents 
granted by the United States Patent and Trademark Office (USPTO) 
between 2015 and 2022 that were classified to be about AI based on 
an official way of coding patents called PATENTSCOPE AI Index 
(51) to then filter away patents only tangentially related to AI. We se-
lected the subset of patents in the index class core AI applications 
(Table S1). This resulted in a final corpus of 24,758 AI patents.

Measuring AII on occupation tasks
Sentence-transformers
We developed a Sentence-Transformers Deep Learning framework 
(52) for Natural Language Processing that uses the Sentence-T5 
(ST5) architecture (29) to convert input text into “semantic vector 
representations” called “embeddings”. These embeddings capture 
the semantic information of the text and allow us to mathematical-
ly compute the similarity of a pair of text snippets. In particular, we 
chose the Sentence-T5-XL model, which is highly recommended for 
its effectiveness in handling various language tasks such as classifi-
cation and similarity comparisons (52). This model has demon-
strated exceptional performance in a comprehensive benchmark 
test—the Massive Text Embedding Benchmark—that evaluated dif-
ferent models across 58 datasets and 112 languages for embedding 
tasks such as classification, clustering, and semantic textual simi-
larity (53). We used the default parameters of the model because 
they were already optimized for textual similarity tasks similar 
to ours. The model’s default training parameters include an 
Adafactor optimizer at a learning rate starting at 0.0001, with linear 
decay after 10% of the total training steps; the fine-tuning was con-
ducted using a batch size of 2048, and a softmax temperature τ of 
0.01 was used. The model was trained on a dataset of 2 billion ques-
tion and answer (Q&A) pairs from online Q&A communities, and 
was then fine-tuned to enhance its understanding of how sentences 
are related to each other by training on pairs of sentences that had 
been manually reviewed for their meaning (54). The model uses a 
siamese network architecture (55), which processes pairs of senten-
ces to generate a consistent output length, regardless of the sen-
tence length. This method of producing fixed-size feature vector 
representations has proven effective in capturing the deeper mean-
ings of text without the need for any preprocessing (56, 57).
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AI impact
We defined AII as a measure of “the exposure to AI by measuring the 
extent to which an occupation’s tasks are associated with patents”. For 
each task, we identified the patent with the highest task–patent 
similarity score (Eq. 1) to represent the AI potential impact αt on 
task t indicating the extent to which task t aligns with AI-related 
innovations: 

αt = max
p

sim(vt, vp), (1) 

where sim(vt, vp) is the cosine similarity between the embeddings 

of task t and the embeddings of patent p. We computed the impact 
of AI on task t by taking the maximum similarity value. We took 
the maximum instead of, say, the average because if the average 
was used, similarity scores from patents that are not particularly 
relevant to the task would be factored into the calculation, there-
by diluting the AI impact score (Fig. S3). Multi-instance learning 
was also considered as an alternative, but it did not produce any 
more accurate task–patent matching (explained in “Task–Patent 
Matching” in the Supplementary Material).

Measures of AII on occupations and industry 
sectors
AI impact on occupations
We computed the AI impact xj on occupation j by computing the 
number of AI-impacted tasks over the total number of j’s tasks:

xj =


t∈tasks(j) 1αt>p90(α)


t∈tasks(j) 1
, (2) 

where p90(α) is the 90th percentile of AI impact values computed on 
all occupations’ tasks, and 1αt>p90(α) is an indicator function whose 

value is 1, if αt > p90(α), and 0 otherwise. In other words, the AII 
measure is based on counting an occupation’s tasks impacted by 
AI without accounting for the relative importance of each task, in 
a way similar to previous work (26). Using the 90th percentile as 
the threshold makes the AI impact measure more robust to noise, 
which was also suggested in a previous study (24). Given that every 
task is assigned a similarity value in the previous step, the patent 
deemed most similar for a specific task might still be unrelated to 
that task. On the other hand, a higher 95th percentile threshold 
would be too strict, as 55% of the occupations would have zero im-
pacted tasks. To further validate our task–patent matching meth-
od, two authors independently assessed the relevance of a patent 
to a task in a random sample of 100 task–patent pairs. Overall, their 
agreement was nearly perfect, with a Cohen’s Kappa of 0.84.

AI impact on industry sectors
To determine the potential impact of AI on industry sector s, we 
calculated the mean AII score across all occupations j associated 
with sector s (Eq. 3). Occupation j was assigned to sector s, if 
over 50% of workers in j were employed in s:

πs =
1

Ns



j∈occupations(s)

xj, (3) 

where Ns is the number of occupations associated with s. If more 
than half of the workers in an occupation are employed in a par-
ticular sector, it can be reasonably concluded that this occupation 
is primarily associated with that sector (3). Lower thresholds 
might lead to occupations being associated with multiple sectors, 
making the results less specific. Conversely, a higher threshold 
might be too restrictive, potentially excluding occupations with 
a significant presence in a sector, even if not overwhelmingly so.

Thematic analysis on occupations and industry 
sectors
Occupations
To identify emergent themes that characterize least- or 
most-impacted occupations, we conducted a thematic analysis 
(58, 59) on the task–patent pairs for all tasks associated with those 
occupations. This process consists of two steps: open coding, in 
which textual data is broken up into discrete parts and then 
coded; and axial coding, in which the researcher draws connec-
tions between the generated codes (60). We first applied open cod-
ing to identify key concepts that emerged across multiple task– 
patent pairs; specifically two of the authors read all task–patent 
pairs, and marked them with keywords that reflected the key con-
cepts expressed in the text. They then used axial coding to identify 
relationships between the most frequent keywords to summarize 
them in semantically cohesive themes (e.g. healthcare, informa-
tion technology, and manufacturing). Themes were reviewed in 
a recursive manner rather than linear, by re-evaluating and ad-
justing them as new task–patent pairs were parsed.

Industry sectors
Just as with occupations, we conducted thematic analysis (58–60) 
to uncover potential explanations for the most- and least- 
impacted sectors. We again applied open coding to identify key 
concepts that emerged on the descriptions of occupations (exam-
ples presented in Table S3) across the industry sectors under 
study, with the same two authors reading all descriptions and 
marking them with keywords that reflected the key concepts ex-
pressed in the text. We then again used axial coding to identify re-
lationships and potential explanations.

Beyond automation: measuring augmentation
Automation refers to “technologies that substitute for the labor 
inputs of occupations, potentially replacing workers performing 
these tasks” (26). That is what our AII captures, and it does so by 
first identifying the patent most similar to an occupation task 
(Eq. 1), and then computing the number of AI-impacted tasks 
over the total number of tasks at a given occupation (Eq. 2). In add-
ition to automation, previous research introduced a complemen-
tary type of AI’s potential impact: augmentation. This refers to 
“technologies that increase the capabilities, quality, variety, or 
utility of the outputs of occupations, potentially generating new 
demands for worker expertise and specialization” (26). To meas-
ure augmentation, instead of measuring the similarity between 
patents and occupation tasks, we measured the similarity 
between patents and micro-titles defined in the Census 
Alphabetical Index of Occupations and Industries (CAI) (26), and 
then computed the number of AI-impacted micro-titles over the 
total number of micro-titles at a given occupation. Unlike occupa-
tion tasks, micro-titles capture the “emergence of new work cat-
egories that typically reflect the development of novel expertise 
within existing work activities (e.g. electrical trades skills specific 
to solar installations) or an increase in the market scale of a 
niche activity (e.g. nail care) (26).” For example, USPTO patent 
US20180275314A1 for “method and system for solar power fore-
casting” was linked to the micro-title of “solar thermal installer” 
and the task of “performing computer simulation of solar photo-
voltaic generation system performance or energy production 
to optimize efficiency”. Similarly, patent US2022083792A1 for a 
“method and device for providing data for creating a digital 
map” was linked to the micro-title “digital cartographer” and the 
task of “mapping forest tract data using digital mapping systems”. 
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In addition to measuring automation (using our AII measure on 
occupation tasks) and augmentation (adapting our AII measure 
on micro-titles), we replicated the method proposed by Gmyrek 
et al. (36). This method uses the mean and standard deviation 
of task-level scores to distinguish between automation and 
augmentation (explained in “Beyond Automation: Measuring 
Augmentation” in Supplementary Material).
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