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ABSTRACT
Biosignal sharing is a way to convey our emotional states, inter-
nal experiences, and activities, which could potentially make us
not only individually more aware, but also enhance our ability
to understanding collective emotions. While wearable research
has advanced on the techniques for processing and acquisition of
biosignals, it is unclear how such systems could work in real-life
scenarios, unobtrusively, and at scale. We present a wearable-based
biofeedback system for processing physiological indicators from
consumer-grade devices, and visualizing the emotional state of a
group of people in an abstract and playful way.

CCS CONCEPTS
•Human-centered computing→ Computer supported coop-
erative work;Ubiquitous andmobile devices; Visualization ap-
plication domains.
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1 INTRODUCTION
Expressive biosignals, like our heartbeat, are known to be affected
by our emotional states and internal experiences. In turn, moni-
toring biosignals can increase the emotional of individuals as well
as groups. The ability of understanding other people emotions
is often referred to as emotional intelligence—a skill that helps to
overcome stressful situations, communicate in effective ways, and
empathize [18]. For this reason, HCI and Ubicomp research has
attempted to designing systems to support and augment our emo-
tional intelligence in multiple contexts. More recently, researchers
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argue for interactive systems that make physiology accessible for
the design [20]; a prerequisite towards building tools for emotional
intelligence. They envision systems that provide a path into the
body’s systems by aligning the inbodied to better support the em-
bodied interaction. With the advancements of wearable technolo-
gies, these systems can support users to get insights from their own
and others’ bodily signals, and provide interventions aimed at im-
proving performance and well-being [20]. The system we propose
adopts the paradigms of Inbodied Interaction.

To realize this vision, researchers often face one main challenge:
to measure emotional states unobtrusively, and at scale. While
current wearable sensing systems, to a great extent, can estimate
feelings or psychological conditions, they do so mostly on specific
constructs like stress and anxiety [2, 4], targeting individuals. To
overcome this challenge, we aim at translating physiological indi-
cators gathered through consumer-grade wearable devices into a
multi-dimensional emotion model (e.g., Plutchik’s model [16]), and
visualize them in an abstract and playful way to increase the collec-
tive awareness of psycho-physiological state of a group of people.
In so doing, we present an end-to-end wearable-based biosignals
sharing system, and we made two contributions: (a) collecting and
analyzing physiological indicators in real-time, and (b) visualizing
these indicators into an abstract and playful way that conveys the
emotional state of a group of people. For example, a group of people
wearing watches could share their physiological signals, which, in
turn, are displayed in a screen as the collective emotional state.

2 RELATEDWORK
AffectiveComputing andWearables:We frame ourworkwithin
the broader area in computing that deals with the recognition, inter-
pretation, and understanding of human affects [15], with a particu-
lar focus on wearable sensing. Wearable-based consumer products
such as Feel1, Oura2, and Moodmetric3, Empatica4, capture and
process physiological indicators (e.g., heart rate, skin conductance)
to produce quantitative representations of emotional states. Today’s
widespread adoption and technological advancements of wearable
devices facilitate monitoring of people’s biosignals unobtrusively,
and at scale [1, 6, 14, 19]. For example, Gjoreski et al. [4] used
Empatica devices to detect stress by combining heart rate variabil-
ity (HRV) and electrodermal activity (EDA) analysis, while Gloor

1https://www.myfeel.co/
2https://ouraring.com/
3https://moodmetric.com/
4https://www.empatica.com/
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Figure 1: Our watch application, implemented using the Ti-
zen platform. It runs on Samsung watches and continuously
records physiological readings through the device’s optical
PPG sensor.

et al. [5] showed that happiness is strongly linked with intense
activity.
Biosignals Sharing: Most prior work in biosignals target individ-
uals by providing feedback on fitness and well-being [3, 13]. At
collective level, prototypes like HeartChat [7] and EmpaTalk [11]
allow online chat partners to communicate their emotions through
the use of visual indicators of heart rate changes. In a similar vein,
sharing changes in heart rate, skin conductance, and breathing [3]
has also been demonstrated to alleviate stress in workers collabora-
tion settings [22]. A potential application of our system. Sharing
biosignals among groups have not only been demonstrated to in-
crease awareness, but also to boost social and interpersonal interac-
tions. For example, Janssen et al. [8] showed that heartbeats sounds
can increase intimacy and closeness, while others demonstrated
that biosignals sharing can increase awareness of another person’s
context by feeling them present [12, 21].

3 WEARABLE BIOSIGNAL SHARING SYSTEM
3.1 Watch Application and Physiological data

corpus
We developed an application for Samsung watches using the Tizen
platform5 (Figure 1). The application continuously records people’s
heart rate from the device’s optical PPG (Photoplethysmography)
sensor at 10Hz, and nudges them into submitting self-reports about
their emotional state via notifications at random times. Specifically,
users can report how happy they are and how relaxed they feel,
on a scale from 1 to 5. We deployed the watch application with 12
subjects for a period of three weeks, and collected 1,121 hours of
raw PPG signals and 1,032 self-reports, which we used to validate
our mapping of physiological indicators to emotional states.

3.2 Mapping HR/HRV to emotions
The collected raw signals are then processed using off-the-shelf
signal processing tools [23] to conduct HRV analysis. Usually, HRV
—the variation in time between heartbeats— is measured through
a family of parameters that are defined in the time domain (e.g.,
RMSSD), in the frequency domain (e.g., LF/HF), and as non-linear
5https://www.tizen.org/

indices (e.g., SD1, SD2) [10]. In particular, we focus on two pa-
rameters, i.e., RMSSD and LF/HF, as well as the instantaneous HR.
RMSSD is a widely used parameter across studies as a proxy to an
HRV score [10]. It is defined as the root mean square of successive
differences of consecutive RR intervals, and reflects activity in the
vagal tone. Additionally, the ratio of low and high frequencies LF/HF
is another widely parameter that captures both sympathetic and
vagal activity, thus providing a way of assessing the state of our
Autonomic Nervous System, and broadly our emotional states [9].
To map biosignals to emotional states, we resorted to a literature-
driven mapping approach. In particular, we reviewed previous find-
ings presented in [9], and we identified that a combination of HR,
RMSSD, and LF/HF parameters distinguish quite effectively differ-
ent emotional states in Plutchik’s emotion model [16]. For example,
joy is characterized by a unique footprint of high/low levels of these
three parameters.

To further validate our mapping approach, we analyzed the data
collected during the three-week deployment study. Particularly, we
analyzed the HR and the two HRV parameters in relation to the self-
reported emotion labels. To do so, we computed each user’s baseline
HR and HRV parameters by averaging all values for each of the
three features across the whole duration of the trial. We then com-
puted a metric that captures each user’s daily deviations from their
baseline values. To explore their relationship to the self-reported
data, we computed the probability for each emotional state for each
day as P(E) = |EL |

|L | , where L is the set of all the self-reports across all
days, EL is a subset of L computed as EL = {l ∈ L | l ≥ M̄L}, where
l is a self-report, and M̄L the median value of all the self-reports.
Using the median value of the self-reports allowed us to partition
these self-reports as being either positive or negative. When com-
paring the low and high groups of HR and HRV parameters in
relation to the probabilities for each emotional state, we observed
consistent results that matched theoretical expectations [9]. For
example, people who reported higher levels of positive emotional
states such as joy had, on average, 14.7% higher HR and 4.8% lower
HRV parameters, than those who reported lower levels of joy.

3.3 Collective Emotional States Display
To visualize the collective emotional states, we resorted to an ab-
stract, behavior model that simulates the coordinated behavior in
human society. The visualization display of collective emotional
states (Figure 2 (c)) is based on the Boids model, which is a type of
behavior model that offers a simple way to depict group dynam-
ics. It also resonates with the human instinctive interpretation of
collective behavior [20]. The Boids model originates from Craig
Reynolds, who described it as an approach to simulate the aggre-
gate motion of a flock of birds, a herd of land animals, or a school
of fish through a distributed behavioral model [17]. By design, it
also preserves users’ anonymity in sharing their own physiological
data as it visualizes them in a collective way.

We developed aweb-based visualization usingHTML5/JavaScript
and D3 that simulates a collection of independent particles moving
on a canvas. These particles, called ‘boids’, depict the collective
emotional state of a group of people. Reynold’s model [17] defines
three forces that control the behavior of boids; (a) separation, (b)
alignment, (c) cohesion. Separation controls collisions with nearby
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Figure 2: Schematic architecture overview. (a) Data obtained
frommultiplewatches are (b) processed and aggregated, and
(c) visualized in a playful way. The visualization display con-
veys the collective emotional state of a group of people.

boids, alignment matches a boid’s velocity with that of neighbors,
and cohesion allows boids to stay closer to each other. By varying
these parameters, real-time physiological indicators could be trans-
lated into eight different emotional states. For example, Figure 3a
illustrates a scenario in which a group of people experience a posi-
tive emotion (i.e., joy), while Figure 3g depicts a negative one (i.e.,
angry).

4 DISCUSSION AND CONCLUSION
We present a wearable-based biosignal sharing system for groups.
Our end-to-end systemmeasures physiological indicators of a group
of people, translates these indicators into emotional states, and vi-
sualizes them in an abstract and playful way. Aligned with the
Inbodied Interaction paradigm [20], our system aims to better align
with how our body internally works, and create emotional aware-
ness between a group of people.

Practically, our system could be deployed in a number of settings.
We foresee potential applications at the workplace, in small or large
teams, or even at larger audiences such as theater rooms during
lectures, or crowd events. For example, team members could wear
watches that obtain their heart rate in real-time, and through our
system’s visualization they get an immediate feedback of the team’s
mood. In turn, they can act upon this feedback to handle stressful
situations, or embrace joyful ones. While the current visualization
is served via a web browser, the same approach could be adapted
to large interactive installations and integration in physical spaces.
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